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Abstract

Background: The reduced rainfall in southeast Australia has placed this region’s urban and rural communities on escalating
water restrictions, with anthropogenic climate change forecasts suggesting that this drying trend will continue. To mitigate
the stress this may place on domestic water supply, governments have encouraged the installation of large domestic water
tanks in towns and cities throughout this region. These prospective stable mosquito larval sites create the possibility of the
reintroduction of Ae. aegypti from Queensland, where it remains endemic, back into New South Wales and other populated
centres in Australia, along with the associated emerging and re-emerging dengue risk if the virus was to be introduced.

Methodology/Principal Findings: Having collated the known distribution of Ae. aegypti in Australia, we built distributional
models using a genetic algorithm to project Ae. aegypti’s distribution under today’s climate and under climate change
scenarios for 2030 and 2050 and compared the outputs to published theoretical temperature limits. Incongruence identified
between the models and theoretical temperature limits highlighted the difficulty of using point occurrence data to study a
species whose distribution is mediated more by human activity than by climate. Synthesis of this data with dengue
transmission climate limits in Australia derived from historical dengue epidemics suggested that a proliferation of domestic
water storage tanks in Australia could result in another range expansion of Ae. aegypti which would present a risk of dengue
transmission in most major cities during their warm summer months.

Conclusions/Significance: In the debate of the role climate change will play in the future range of dengue in Australia, we
conclude that the increased risk of an Ae. aegypti range expansion in Australia would be due not directly to climate change
but rather to human adaptation to the current and forecasted regional drying through the installation of large domestic
water storing containers. The expansion of this efficient dengue vector presents both an emerging and re-emerging disease
risk to Australia. Therefore, if the installation and maintenance of domestic water storage tanks is not tightly controlled, Ae.
aegypti could expand its range again and cohabit with the majority of Australia’s population, presenting a high potential
dengue transmission risk during our warm summers.
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Introduction

Aedes (Stegomyia) aegypti (Linneaus) is an important vector of

dengue and other arboviruses. Despite its limited flight dispersal

capability [1,2], its close association with humans and its

desiccation-resistant eggs have facilitated many long distance

dispersal events within and between continents, allowing it to

expand its range globally from its origin in Africa. Its global

emergence and resurgence can be attributed to factors including

urbanisation, transportation, changes in human movement, and

behaviour, resulting in dengue running second to malaria in terms

of human morbidity and mortality [3,4]. Global historical

collections and laboratory experiments on this well studied vector

have suggested its distribution is limited by the 10uC winter

isotherm [5], while a more recent and complex stochastic

population dynamics model analysis suggests the temperature’s

limiting value to be more towards the 15uC yearly isotherm [6].

While historical surveys in Australia have indicated that Ae. aegypti

occurred over much of the continent (see Fig. 1), its range has

receded from Western Australia, the Northern Territory and New

South Wales (NSW) over the last 50 years. It is now only found in

Queensland [7,8], although recent incursions into the Northern

Territory have required costly eradication strategies [8]. The

significant reduction in vector distribution has been attributed to a

combination of events including the introduction of reticulated

water, which reduced the domestic water storage requirements of

households that had provided stable larval sites [7,9], as well as the

removal of the railway-based water storage containers hypothesised

as being responsible for the long distance dispersal events of Ae. aegypti

into rural regions in NSW via steam trains [7,10].
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Today, epidemic dengue is limited to regions of Queensland

where Ae. aegypti is extant, and the frequency of outbreaks has

increased constantly over the past decade [11]. Historically,

epidemics of dengue were recorded in northern Queensland in the

late 1800s and in southeast Queensland in 1904–05 [10]. Dengue

epidemics in 1926, 1942 and 1943 all extended from Queensland

south into NSW, stopping only on the arrival of winter [12].

Derrick and Bicks [12] found that these dengue epidemics ceased

when the outside temperature reached a wet bulb isotherm of

between 14–15uC and suggested that a parameter of 14.2uC mean

annual wet bulb isotherm (TW) best represented the limiting

parameter for the 1926 epidemic.

The current drying of southeast Australia has placed this

region’s urban and rural communities on escalating water

restrictions, with anthropogenic climate change forecasts suggest-

ing that this drying trend will continue [13]. To mitigate against

this regional drying effect and the stress it places on domestic water

supply, state government rebate programs have been initiated to

encourage the installation of large (.3000 L) domestic water tanks

in towns and cities throughout this region. Data from the

Australian Bureau of Statistics [14] records that in 2006, 20.6%

of all Australian household dwellings had rainwater tanks.

Figure 1. Map of Australia showing the 234 Ae. aegypti collection sites described in Table S1. Almost all localities (except site 219 and
220) can be regarded as historical collections while red sites indicate historical sites where Ae. aegypti is no longer found and green sites are regarded
as contemporary sites, collected since 1980. Top right map displays the current Australia resident population distribution and each dot represents
approximately 1000 people (Source: Australian Demographic Statistics (3101.1)).
doi:10.1371/journal.pntd.0000429.g001

Author Summary

Current and projected rainfall reduction in southeast
Australia has seen the installation of large numbers of
government-subsidised and ad hoc domestic water
storage containers that could create the possibility of the
mosquito Ae. aegypti expanding out of Queensland into
southern Australian’s urban regions. By assessing the past
and current distribution of Ae. aegypti in Australia, we
construct distributional models for this dengue vector for
our current climate and projected climates for 2030 and
2050. The resulting mosquito distribution maps are
compared to published theoretical temperature limits for
Ae. aegypti and some differences are identified. Nonethe-
less, synthesising our mosquito distribution maps with
dengue transmission climate limits derived from historical
dengue epidemics in Australia suggests that the current
proliferation of domestic water storage tanks could easily
result in another range expansion of Ae. aegypti along with
the associated dengue risk were the virus to be
introduced.

Climate Change Adaptation and Dengue in Australia
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Given the expansion of domestic rainwater tanks in southern

Australia, and assuming these domestic water tanks can provide

oviposition sites, we ask this question: can climate be assessed to

determine the distributional limits of Ae. aegypti and dengue in

Australia? We first use a genetic algorithm to develop ecological

niche models for the distribution of Ae. aegypti in Australia (using data

points drawn from both historical and contemporary collection sites)

and evaluate the potential distributional limits of Ae. aegypti in

Australia under today’s climate and in future projected climate

change scenarios. We map these limits in relation to published

experimental and theoretical projections of Ae. aegypti’s temperature

limits and then compare all projections to dengue transmission

climate limits obtained from epidemiological studies of historical

dengue epidemics in Australian. We find that human adaptation to

climate change – through the installation of large stable water

storage tanks – may pose a more substantial risk to the Australian

population than do the direct effects of climate change. Additionally,

we find that using point occurrence data and environmental

parameters of climate and elevation to map the distribution of Ae.

aegypti in Australia prove deceptive and require interpretation as

some Ae. aegypti collection sites exist outside our ecological niche

models and both theoretical cold temperature limits. This suggests

that Ae. aegypti’s domestic behaviour – with a lifecycle based around

human habitation that includes blood-feeding and resting indoors as

well as egg laying in artificial containers around houses – plays an

influencing role on distribution.

Materials and Methods

Distribution of Aedes aegypti in Australia
Coordinates for a total of 234 Ae. aegypti collections sites are

described in Table S1. Historical collection sites were compiled

[7,9,15,16]. Contemporary collection sites were regarded as those

collected since 1980 because most country towns had moved to

reticulated water, steam powered trains had been replaced by

diesel, and the common railway station water-filled fire buckets

were removed [9,17,18]. Contemporary sites also include

collections made between 1990 and 2005 from southeast Queens-

land (P. Mottram, unpub. data), and the Northern Territory (P.

Whelan, unpub. data).

Base climate layers
Raster ASCII grids were generated for Australia at a spatial

resolution of 0.025u (approximately 2.5 km) for eight climate

variables plus elevation. These included annual mean rainfall and

annual mean temperature produced by BIOCLIM using the

ANUCLIM software package [19] as well as mean values of

maximum temperatures and minimum temperatures for the months

of January and July produced by the ESOCLIM component of

ANUCLIM. This procedure involved the use of monthly mean

climate surface coefficients, generated by the thin plate smoothing

spline technique ANUSPLIN [20] from Australian Bureau of

Meteorology climate data between 1921 and 1995 [21]. The

geographic coordinates of the meteorological stations were used as

independent spline variables together with a 0.025u digital elevation

model (DEM) for Australia generated with ANUDEM [22] which

acted as a third independent variable. As atmospheric moisture is

known to be an important factor in terms of the survival and

longevity of adult mosquitoes, mean values of dewpoint for January

and July were generated with ESOCLIM to provide this.

Climate change layers
A further series of ASCII grids were generated from climate

change scenarios using OzClim version 2 software [23,24] at a

spatial resolution of 0.25u (approximately 25 km). The scenarios

used for this study were for 2030 and 2050 using CSIRO: Mk2

Climate Change Pattern with SRES Marker Scenario A1B and

mid climate sensitivity. The output variables corresponded to the

predicted change from the base climate for the rainfall and

temperature parameters generated with ANUCLIM.

This version of OzClim outputs vapour pressure rather than

dewpoint as a measure of atmospheric moisture. For the present

study vapour pressure grids for the predicted change from base

climate for January and July were generated and the grid cell

values were converted to dewpoint by applying the inverse of

Tetens’ equation [dp = (241.886ln(vp/610.78))/(17.5582ln(vp/

610.78)]. This mathematical procedure was implemented with

the use of ImageJ software (publicly available at http://rsbweb.

info.nih.gov/ij) together with the raster operations of TNTmips

(MicroImages Inc., Lincoln, Nebraska).

The environmental layers used for climate change modelling

were prepared by resampling the OzClim outputs to the

geographical extents and grid cell size of the ANUCLIM grids

using TNTmips. The resampled outputs were then added to the

corresponding ANUCLIM base climate layers to produce the

environmental layers predicted for the chosen climate change

scenarios.

Ecological niche modelling
DesktopGarp version 1_1_6 [25] was used for ecological niche

modelling in a manner similar to our earlier studies [26]. Models

derived from the historical climate data were generated using the

record sites for Ae. aegypti as inputs together with the eight base

climate layers and elevation (the ANUDEM generated DEM is

described above) to model the range of Ae. aegypti. Species record

sites and the climate change layers for 8 environmental parameters

were derived from the climate change scenarios for 2030 and 2050

as well as the elevation layer. We utilized the medium sensitivity

which corresponds to a global warming of 2.6uC for a doubling of

CO2 from 280 ppm to 560 ppm [27]. The GARP procedure was

implemented using half of the species record sites as a training data

set for model building and the other half for model testing.

Optimization parameters included 100 models for each run with

1000 iterations per model and 0.01 convergence limits. The best

subsets procedure [28] was used to select 5 models which were

added together using TNTmips to produce predicted range maps

for each species.

Theoretical temperature limits for Ae. aegypti
extrapolated across Australia

Previous studies of the distributional limits of Ae. aegypti were

used to develop distribution maps for Australia. Christophers [5]

hypothesised a climate limit of 10uC winter isotherm based on

historical global collection data and laboratory-based experiments.

We also evaluated the hypothetical limit from Otero and

colleagues [6], who used a complex stochastic population model

that incorporates the lifecycle parameters of Ae. aegypti to suggest a

15uC annual mean isotherm. Both these values were incorporated

into distributional maps of Australia using TNTmips.

Climate limit of dengue transmission in Australia
Dengue transmission maps were developed using data from

historical dengue outbreaks in Australia [12]. This work found that

these dengue epidemics ceased when the outside temperature

reached 14–15uC wet bulb isotherm and that a single parameter of

14.2uC annual mean wet bulb isotherm (TW) best approximated

the limit of the 1926 epidemic – probably as a result of reducing

Climate Change Adaptation and Dengue in Australia
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the mosquitoes’ feeding activity and the ability of the virus to

replicate. This 14.2uC annual mean wet bulb isotherm value was

mapped onto Australia for the current climate using TNTmips

and three seasonal increments: the annual mean, the warmest

quarter (December–February), and the coolest quarter (June–

August).

Results

Distributional projections of Ae. aegypti: GARP modelling
Distribution sites for Ae. aegypti in Australia (234 sites) were

collated and displayed in a single map using GPS coordinates

(Table S1 and Fig. 1). Ecological niche models were built with

desktop GARP to produce a best subset model that showed

agreement with the full complement of Ae. aegypti collections in

Australia (Fig. 2A). In this projection, much of northern, eastern

and southeast Australia was projected to present a suitable niche.

This model closely tracks an annual rainfall pattern of less than

300 mm. However, the excluded region around central Australia

included two Ae. aegypti positive collection sites (Meekatharra in

central Western Australia and Boulia in Queensland): both

collection localities are small regional centres on main inland

transport routes.

The projected climate change scenario for 2030 produced

distributional models with small expansions of the base model

envelope, mostly evident in southern Australia (Fig. 2B). Likewise

the 2050 model (Fig. 2C) extended the 2030 trend, resulting in a

reduced niche in north-west Australia’s Pilbara region while parts

of central Australia opened up as a potential niche.

Theoretical temperature limits of Ae. aegypti
The temperature limit parameters of 10uC winter isotherm [5]

and 15uC annual isotherm [6] were used to build theoretical

isotherm limits for Ae. aegypti in Australia (Fig. 3). Figure 3A shows

a 10uC winter isotherm limit base map for the current climate and

OzClim projections were then generated for 2030 and 2050 by

adding the projected changes to this base map (3B and 3C

respectively). The 15uC annual isotherm limits were similarly

generated using a base map and adding the OzClim changes. Both

the 10uC (average winter) and 15uC (average annual) limits

incorporate the major state capitals cities – Brisbane, Sydney,

Adelaide and Perth. When these isotherm limits were subjected to

the climate change scenarios for 2030 and 2050, the projection

expanded to include the other mainland state capital, Melbourne

(Fig. 3B and 3C).

Several Ae. aegypti collection sites occurred well within the two

theoretical cold climate limits. Table 1 details six Ae. aegypti

collection sites as examples where the annual mean temperature

and the mean temperature for July (calculated as (mintemp+max-

temp)/2) fall below the theoretical values and range from 12.4–

15.4uC and 5.2–7.6uC respectively.

Theoretical dengue transmission limits
Derrick and Bicks [12] suggested that dengue transmission

stopped between the 15uC and 14uC TW isotherm and suggested

Figure 2. Distributional projections of Ae. aegypti in Australia
based on 234 collection sites and built using desktop GARP
and eight climatic variables. Panel A is the base layer projection
(gray region) for the climate of 1995 and is regarded as current climate.
Panel B is the projection of the forecasted climate changes for 2030 mid
scenario. Panel C is the projection of the forecasted climate changes for
2050 mid scenario.
doi:10.1371/journal.pntd.0000429.g002
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that a 14.2uC TW annual mean isotherm best approximated the

temperature limit for transmission in the 1926 dengue epidemic.

We applied this isotherm to Australia for the annual mean

isotherm (Fig. 4A) as well as the warmest quarter isotherm

(summer; December–February, Fig. 4B) and the coldest quarter

isotherm (winter; June–August, Fig. 4C). These climate limit maps

indicate that if the vector could re-establish itself throughout its

former range then much of northern tropical Australia would be

receptive to dengue transmission year round and transmission

would be possible throughout most of Australia during the summer

months.

Discussion

Can the historical distribution of Ae. aegypti in Australia provide

an insight into the potential distribution potential of this mosquito?

Figure 3. Theoretical distribution limits for Ae. aegypti and dengue transmission in Australia. Panels A–C represent the 10uC July
isotherm with panel A the base layer projection for the current climate (1995). Panels B and C show the 10uC July isotherm limit of the climate change
(mid) scenarios for 2030 and 2050 respectively. Panels D–F show distribution limits of Ae. aegypti in Australia based on the climate limit of 15uC
annual mean isotherm. Panel D is the current climate (1995), panels E and F show the 15uC annual mean isotherm for climate change mid scenarios
2030 and 2050 respectively.
doi:10.1371/journal.pntd.0000429.g003
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Using 234 different spatial data points generated from historical

and contemporary collections of Ae. aegypti in Australia, we

developed ecological niche models to hypothesise the potential

range expansion of this mosquito under today’s climate and under

future climate change scenarios for 2030 and 2050 using OzClim

mid sensitivity values that correspond to a global warming of

2.6uC for a doubling of CO2 from 280 ppm to 560 ppm [27]. In

Australia general warming estimates are approximately 1.0uC by

2030 and 1.2 to 2.2uC by 2050, the latter values being dependent

on CO2 emissions. While rainfall (outside of far north Australia) is

estimated to decrease by 2% to 5%, southern Australia is projected

to encounter a 5% reduction in rainfall [13]. Our GARP model

for current climate suggested that Ae. aegypti could potentially

coexist with over 95% of the Australian population and this

distribution did not change significantly, with regard to the

Australian population distribution, under either the 2030 and

2050 climate change scenarios.

Only the highly arid central Australian region was excluded

from the projection (annual rainfall less than 300 mm). The

GARP model did not show southern cold climate thermal limits in

Australia, probably due to the presence of several Ae. aegypti

collection sites from inland New South Wales that show cool

climate parameters. We then mapped two theoretical cool climate

limits across Australia – the 10uC winter (July) isotherm [5] and

the 15uC annual mean isotherm [6]. Of these two isotherm limits

the 15uC annual mean isotherm appeared more representative of

the known distribution of Ae. aegypti in Australia, although

collection sites did exist outside these temperature isotherm limits.

It remains unknown if the cold climate tolerant populations

were breeding in the warmer months and surviving the colder

winter months as eggs [29], or were surviving as larvae. With

regard to these questions, observations have been recorded of

viable Ae. aegypti larvae in ice encrusted water [5,7], while

experiments have suggested that a water temperature of 1.0uC
can be lethal over 24 hours, but larvae can be viable at a constant

7.0uC for over a week [5]. At the other temperature extreme,

laboratory experiments show that Ae. aegypti larvae perish when the

water temperature exceeds 34uC while adults start to die off as the

air temperature exceeds 40uC [5]. Domestic water tanks in

Australia contain thousands of litres of water that would – in

combination with the mosquitoes’ domestic (indoor) nature –

provide a buffer to temperature extremes and assist mosquito

survival in what may appear unsuitable environments. For

example, Ae. aegypti exists and transmit dengue in India’s Thar

desert townships in north-western Rajasthan, where the mosquito

utilises household pitchers and underground cement water tanks.

[30].

The incongruence between the temperature limits and our

ecological niche models highlights the difficulties of using what are

essentially sophisticated climate pattern matching procedures to

study an organism with a biology and ecology strongly influenced

by human activity. Fortunately, we can directly compare our

GARP model with a new mechanistic model of the same organism

over the same environment [31]. This mechanistic model utilises

biophysical life processes parameters such as the effects of climate

on reproduction and larval development. Larval development in

both rainwater tanks and smaller containers were assessed and the

potential distribution of Ae. aegypti was projected across Australia.

Projections using rainwater tanks larval development resembled

our GARP model for Northern and central Australia, but unlike

our projections, a southern cold climate thermal limit was

identified which was actually lower than the published parameters

displayed in Fig. 3 [5,6]. Apart from showing the clear advantage

of a bottom-up approach for modelling this mosquito, this study

supports the hypothesis that domestic rainwater tanks contributed

for the historical southern distribution of Ae.aegypti in Australia.

Humans not only facilitate long distance dispersal events for this

mosquito, co-habitation with humans can provide thermal buffers

to the outdoor climate as adults rest indoors, and domestic

rainwater tanks can provide stable oviposition sites. When the

theoretical distributions (GARP models and temperature limits)

and actual Ae. aegypti distributions are viewed alongside the

expansion of domestic water tanks underway in Australia, a trend

emerges where Ae. aegypti could potentially exist year-round in

today’s climate throughout the southern Australian mainland.

This potential distribution includes the metropolitan areas of

Brisbane (pop 1.8 million), Sydney (pop 4.2 million), Adelaide (pop

1.1 million) and Perth (pop 1.5 million). Additionally the climate

change temperature limit projections for the mid scenario 2050 see

this range expand to include Melbourne (pop 3.6 million). The

addition of a theoretical dengue virus transmission limit parameter

(we used a 14.2uC wet bulb isotherm) suggests an overlapping

dengue risk in many of Australia’s metropolitan regions during the

summer months (December–February).

The potential for dengue virus introduction to these regions

through travellers from endemic regions (including north Queens-

land) during summer presents a transmission risk that can be

inferred by the current incidence of imported and endemic cases of

dengue in Australia – many of which enter Australia through

national and international transport nodes. For example, for the

year to June 2008 there were 250 dengue notifications for

Australia, of which 113 came from Queensland (most via local

transmission), 72 from NSW, 15 from NT, 12 from SA, 8 from

VIC, and 28 from WA. Notifications from New South Wales,

South Australia, Victoria and Western Australia exceeded the five-

year mean in each jurisdiction suggesting that the frequency of

dengue is increasing [32].

Understanding the relationship between climate and dengue

transmission is difficult because non-linear relationships exist

between the daily survival of Ae. aegypti, the extrinsic incubation

Table 1. Collection sites in NSW that fall below theoretical cool temperature limits.

Site Locality Annual mean temp (uC) Max/min temp July (uC) Mean temp July (uC) Elevation (M)

98 Breadalbane 12.4 10.3/0.2 5.25 701

116 Culcairn 14.7 11.9/2.2 7.05 221

187 Wagga Wagga 15.4 12.8/2.4 7.6 177

133 Junee 15.1 12.4/2.2 7.3 295

131 Harden 14.3 12.1/1.2 6.65 396

189 Wallendbeen 13.9 11.6/1.0 6.3 468

doi:10.1371/journal.pntd.0000429.t001

Climate Change Adaptation and Dengue in Australia

www.plosntds.org 6 May 2009 | Volume 3 | Issue 5 | e429



period (EIP) of the virus, temperature and humidity [33–35].

Forecasted regional warming in Australia may lengthen and

intensify the dengue transmission season by shortening the

mosquitoes’ EIP, although it is important to note that dengue

epidemics appear to be more strongly influenced by intrinsic

population dynamic (epidemiological) processes than by climate

[36]. Even so, any temporal extension effect in the transmission

season will follow the expansion of potential larval sites that is now

underway in Australia. Thus, while the issue of regional warming

is important, the expansion of large rainwater tanks throughout

urban regions of Australia is at present a prevailing human

adaptation with more immediate possibilities for changing vector

distributions in Australia than the direct warming effects projected

by anthropogenic climate change scenarios. Whether southern

Australia’s current drought is due to the region’s natural climate

variability or part of a changing climate pattern, will continue to

be debated by some. Nonetheless, it is important to avoid the cycle

where human changes in water storage result in an Ae. aegypti range

expansion followed by dengue epidemics seeded by viremic

travellers [4,37]. Additionally, domestic water storage can sustain

Ae. aegypti populations (and dengue transmission) in regions not

normally suitable for its survival [38], while active government and

community contributions can remove established Ae. aegypti

populations (and dengue) from areas where it has been endemic

[39] – and both of these are human modifications.

In Australia, ineffectively screened domestic rainwater tanks

have been identified as key containers with respect to Ae. aegypti

productivity [40,41]. The introduction of reticulated water systems

in towns and cities throughout Australia is believed responsible for

a major range contraction of Ae. aegypti over the last 50 years. This

trend may now be reversed as humans adapt to climate-change-

induced drought conditions – the increased use of domestic water

storage in tanks could deliver stable primary larval sites into urban

neighbourhoods. In Queensland’s capital city, Brisbane – which is

currently Ae. aegypti free – severe water shortages resulted in

escalating water restrictions with an eventual prohibition on the

use of all outside reticulated water outlets (November 2007–July

2008) and 75,000 domestic water tanks being installed by late

2007. This number of tanks represents approximately 21% of

households with reticulated water in the Brisbane area (F.

Chandler, Brisbane City Council, pers. comm.). Additionally, ad

hoc uncontrolled water tanks are now also commonly being used

to store rainwater, adding to the potential surfeit of stable breeding

sites around Australia that are likely to facilitate the expansion risk

of Ae. aegypti into urban areas. It is unlikely that any of these water

storage tanks – government approved or not – will be maintained

sufficiently to prevent mosquito access in the long term.

The flight range for Ae. aegypti is understood to be generally

small: mark-release recapture experiments show them to have a

flight range of only hundreds of metres [42–44]. However, these

estimates are limited in time and space, being derived from a

snapshot of one or a few gonotrophic cycles which take place in

the context of an abundance of ovipositing sites. Longer distance

Figure 4. Employing a hypothetical dengue climate limit
estimated from epidemics in Australia that stopped on the
arrival of winter where the outside temperature fell to a wet
bulb isotherm (TW) of 14–15uC [12], we mapped a 14.2uC TW

isotherm onto Australia using three temporal increments. Panel
A represents the 14.2uC annual mean TW for Australia [12]. Panel B
represents the 14.2uC TW for Australia’s warmest quarter (December–
February), representing summer transmission. Panel C represents the
same isotherm for Australia’s coolest quarter (June–August), represent-
ing potential year-round transmission.
doi:10.1371/journal.pntd.0000429.g004
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flight range dispersal may be more common, especially when

ovipositing sites are rare, but this is difficult to quantify [45,46].

Human mediated long distance dispersal events are mostly

responsible for Ae. aegypti movement: their highly domestic nature

and desiccation-resistant eggs facilitate successful movement via

human transport routes. Surveys in Queensland in the 1990s [17]

and 1990–2005 (P. Mottram, unpublished) reveal Ae. aegypti

collections from over 70 townships and this number is likely an

underestimate. As the numbers of individuals and populations of

Ae. aegypti increase in Queensland towns, the incursion risk beyond

these regions via human-induced long distance dispersal events

also increases, and with the presence of new stable oviposition sites

growing, the expansion of this dengue vector must now be

expected.

Operations to remove Ae. aegypti incursions are resource-heavy,

often requiring both government legislation and widespread

community cooperation to reduce adult mosquito populations. A

recent example from a 2004 incursion of Ae. aegypti into the small

Northern Territory town of Tennant Creek (pop 3,200) from

Queensland resulted in a two-year eradication campaign that

required 11 personnel and cost approximately $1.5 million and

was achieved in 2006 [8].

Conclusion
Determining the potential distribution of Ae. aegypti in Australia

using climatic parameters can be problematic and in this case

produced results that neither fully match the known distribution,

nor reveal cold climate limits in Australia. Reasons for this may

exist in the difficulty of relating the point occurrence data of a

species’ distribution that is closely tied to humans – unlike native

mosquito species in Australia where GARP models appear more

representative of known distributions [26,47]. We must also

consider the limited climatic parameters available through the

OzClim climate scenario generator that reduced the GARP

modelling to a subset of environmental parameters that may have

little influence on the organism. Because the GARP models

showed no cold temperature limits for Ae. aegypti in Australia, we

also assessed two published theoretical cold temperature limits

across Australia. These temperature limit projections also could

not contain all collection sites, which may suggest that in Australia,

climate - and in particular temperature - plays a less important role

in determining the range of this species due to a combination of its

intimate relationship with humans and our propensity to store

water. This is where the use of statistical approaches and point

occurrence data to evaluate species’ distribution may be weak and

integrating life processes parameters such as the effects of climate

on reproduction and larval development may be more practical

and informative.

If it is an assumption that burgeoning domestic water tanks will

provide stable larval sites for Ae. aegypti, then the synthesis of our

GARP modelling, the theoretical climate limits and the historical

distribution of this mosquito strongly suggest that a distributional

expansion is possible and could expose the majority of Australia’s

population to this dengue vector. Additionally, viewing this

synthesis of Ae. aegypti in Australia with dengue transmission

climate limits obtained from historical Australian dengue epidem-

ics suggests a real risk of dengue transmission occurring in regions

ranging well beyond north Queensland during the summer

months.

We conclude that if the installation and maintenance of

domestic water storage tanks is not tightly controlled today, Ae.

aegypti could be spread by humans to cohabit with the majority of

Australia’s population, presenting a high potential dengue

transmission risk during our warm summers.

Supporting Information

Table S1 Aedes aegypti collection sites in Australia.

Found at: doi:10.1371/journal.pntd.0000429.s001 (0.69 MB RTF)
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