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Abstract

The detection of epistatic interactive effects of multiple genetic variants on the susceptibility of human complex diseases is
a great challenge in genome-wide association studies (GWAS). Although methods have been proposed to identify such
interactions, the lack of an explicit definition of epistatic effects, together with computational difficulties, makes the
development of new methods indispensable. In this paper, we introduce epistatic modules to describe epistatic interactive
effects of multiple loci on diseases. On the basis of this notion, we put forward a Bayesian marker partition model to explain
observed case-control data, and we develop a Gibbs sampling strategy to facilitate the detection of epistatic modules.
Comparisons of the proposed approach with three existing methods on seven simulated disease models demonstrate the
superior performance of our approach. When applied to a genome-wide case-control data set for Age-related Macular
Degeneration (AMD), the proposed approach successfully identifies two known susceptible loci and suggests that a
combination of two other loci—one in the gene SGCD and the other in SCAPER—is associated with the disease. Further
functional analysis supports the speculation that the interaction of these two genetic variants may be responsible for the
susceptibility of AMD. When applied to a genome-wide case-control data set for Parkinson’s disease, the proposed method
identifies seven suspicious loci that may contribute independently to the disease.
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Introduction

With the development of modern human and medical genetics,

it has been widely accepted that genetic variation plays an

important role in the pathogenesis of genetic inherited diseases [1].

The identification of causative genetic variants therefore becomes

the primary step towards the understanding of genetic principles

underlying these diseases. For Mendelian diseases in which an

individual genetic variant in a single gene is both sufficient and

necessary to cause a disease, classical statistical approaches such as

linkage analysis [2–5] and association studies [6,7] have shown

remarkable successes in the identification of causative genetic

variants. Nevertheless most common diseases are complex ones

that are supposed to be caused by multiple genetic variants, their

interactive effects, and/or their interaction with environment

factors [7,8]. The detection of such interactive effects therefore

plays a key role in the understanding of these diseases.

The interactive effects of multiple genetic variants underlying

complex diseases are often referred to as epistasis or epistatic

interactions. Recent advances in biomedical studies have been

confirming the contribution of epistasis to complex diseases. For

example, Tiret et al reported synergistic effects of polymorphisms

in the angiotensin-converting enzyme and the angiotensin-II type

1 receptor gene on the risk of myocardial infarction [9]. Ritchie et

al identified the association of a high-order interaction among four

polymorphisms in three estrogen-metabolism genes with breast

cancer [10]. Williams et al reported the influence of a two-locus

interaction between polymorphisms in the angiotensin converting

enzyme and the G protein-coupled receptor kinase on hyperten-

sion susceptibility [11]. Tsai et al identified the association of a

three-locus interaction among polymorphisms in renin-angiotensin

system genes with atrial fibrillation [12]. Cho et al reported the

association of a two-locus interaction between polymorphisms in

the uncoupling protein 2 gene and the peroxisome proliferator-

activated receptor gamma gene with Type 2 diabetes mellitus [13].

Martin et al reported the influence of a two-locus interaction

between polymorphisms in KIR3DL1 and HLA-B on both AIDS

progression and plasma HIV RNA [14]. With these examples,

epistasis between multiple genetic variants is now widely believed

to be the causative pattern of human complex diseases.

In order to detect epistasis, a number of multi-locus approaches

have been developed. For example, Hoh et al proposed a

trimming, weighting, and grouping approach that used the

summation of statistics on the basis of single-locus marginal effects

and the Hardy-Weinberg equilibrium (HWE) for hypothesis

testing [15]. Nelson et al proposed a combinatorial partitioning

method (CPM) that exhaustively searched for a combinatory

genotype group that had the most significant difference in the

PLoS Genetics | www.plosgenetics.org 1 May 2009 | Volume 5 | Issue 5 | e1000464



mean of the responding continuous phenotype [16]. Culverhouse

et al proposed a restricted partitioning method (RPM) which

modified CPM by ignoring partitions that combined individual

genotypes with very different mean trait values [17]. Millstein et al

proposed a focused interaction testing framework (FITF) in which

a prescreening strategy was developed to reduce the number of

tests [18]. Chatterjee et al used Turkey’s 1-degree-of-freedom

model to detect interacting loci from different regions [19]. Ritchie

et al proposed a multifactor-dimensionality reduction (MDR)

method in which exhaustive search was performed to detect

combinations of loci with the highest classification capability [10].

Although these methods have shown their successes in

association studies for small scale candidate genes [10,15–19],

their effectiveness for large scale case-control data has not yet been

validated. Besides, most of the methods rely strongly on exhaustive

search for combinations of multiple loci. This search strategy,

though feasible when the number of candidate genetic variants is

small, can hardly be computationally practical for large scale or

whole-genome association studies in which the number of

candidate genetic variants is typically very huge. For example, a

study on Age-related Macular Degeneration (AMD) has geno-

typed more than 100 thousand single nucleotide polymorphism

(SNP) markers for 96 patients and 50 unaffected people [20], and a

recent genome-wide association study on Parkinson’s disease has

genotyped more than 400 thousand SNP markers for 270 patients

and 271 unaffected people [21,22]. With such dense SNPs being

genotyped, methods based on exhaustive search are computation-

ally impractical due to the vast number of possible combinations of

the SNP markers. The main challenge for genome-wide

association studies is therefore to design computational approaches

that are capable of avoiding the ‘‘combinatorial explosion’’ curse

to identify epistatic interactions.

A recent breakthrough in genome-wide epistasis mapping is the

introduction of the Bayesian epistasis association mapping (BEAM)

method [23] that integrates a Bayesian model with the Metropolis-

Hastings algorithm to infer the probability that each locus is

associated with the susceptibility of a specified disease. BEAM

classifies SNP markers into three types: SNPs unassociated with

the disease, SNPs contributing to the disease susceptibility

independently, and SNPs influencing the disease risk jointly with

each other. However, the genetic models for complex diseases

could be far more complicated than that proposed by BEAM. For

example, the disease-associated SNPs that jointly influence the

disease risk may be further divided into subgroups, in which a SNP

interacts with other SNPs in the same subgroup, but not with those

in the other subgroups. This situation could be very common in

real data, making BEAM ineffective in the exploration of true

interactive effects of multiple loci.

To overcome this limitation, in this paper, we give an explicit

presentation of ‘‘epistasis’’ and define ‘‘epistatic modules’’ as basic

units of disease susceptibility loci. On the basis of this notion, we

put forward a Bayesian marker partition model to explain the

observed case-control data and further generalize this model to

account for the existence of linkage disequilibrium (LD) between

genetic variants. To facilitate the identification of epistatic

modules, we develop a Gibbs sampling strategy with a reversible

jump Markov chain Monte Carlo (RJ-MCMC) procedure to

simulate the posterior distribution that genetic variants belong to

the epistatic modules and further resort to hypothesis testing to

screen out statistically significant modules. In contrast to most of

the existing methods that entirely or partially rely on exhaustive

search for combinations of loci, the proposed approach, named

epiMODE (epistatic MOdule DEtection), natively identifies inter-

active loci (epistatic modules) without enumerating their combi-

nations, thereby being capable of detecting interactive effects of

multiple loci from a vast number of genotyped genetic variants.

We systematically compare the proposed approach with three

existing methods on seven simulated disease models. The results

show the superior performance of our approach over the other

methods. We further apply the proposed approach to a genome-

wide case-control data set for Age-related Macular Degeneration

(AMD) that contains more than 100 thousand SNPs genotyped for

96 cases and 50 controls [20] and successfully identify two SNPs

that are known to be associated with the disease. Besides, the

results also suggest that two other SNPs (rs1394608 and

rs3743175) may have interactive effects on the susceptibility of

the disease. We also apply the proposed approach to a genome-

wide case-control data set for Parkinson’s disease (400 thousand

SNPs genotyped for 270 cases and 271 controls) [21,22] and

identify seven SNP markers that may be associated with the

disease.

Materials and Methods

Epistasis and Epistatic Modules
The concept of epistasis implies that the phenotypic effect of one

locus is dependent on one or more other loci. Nonetheless the

definitions of epistasis in biology and statistics are not exactly

consistent. Even from the statistical perspective only, researchers

have different understandings of epistasis [24,25]. Considering

these inconsistencies, it is necessary to first give a clear definition of

epistasis, for the purpose of developing a computational method

for identifying multiple loci that contribute to the disease

susceptibility.

In this paper, a locus stands for a SNP. A genotype stands for a

set of two alleles (one inherited from father and the other from

mother) at a locus and has three possible values: homozygosity of

common alleles, homozygosity of minor alleles, and heterozygos-

ity. A combinatory genotype represents the genotype of a

combination of multiple loci. For a combination of t loci, the

number of all possible combinatory genotypes is 3t. The

penetrance of a combinatory genotype is the probability/risk that

an individual with this combinatory genotype is affected, given the

combinatory genotype of the multiple loci. We first assume that all

Author Summary

Although genome-wide association studies (GWAS) have
been quite popular due to recent advances in low-cost
genotyping techniques, most of the reported studies only
analyze single-locus effects because traditional multi-locus
methods are not computationally practical in the detection
of epistatic interactive effects of multiple loci. Here, on the
basis of a rigorous definition of epistatic modules that
describe interactive effects of multiple loci, we take
advantage of a Bayesian model with a properly designed
Gibbs sampling strategy to facilitate the detection of such
modules. We confirm via extensive simulation studies that
the proposed method, named epiMODE, is not only
feasible in detecting multi-locus effects but also more
powerful than three representative methods on seven
disease models. We apply the proposed method to an
Age-related Macular Degeneration (AMD) data and dis-
cover that a combination of two loci—one in the gene
SGCD and the other in SCAPER—might be associated with
AMD. Considering its advantages, we suggest that the
proposed method be applied to more GWAS data for the
detection of multi-locus interactive effects.
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loci are in linkage equilibrium, also known as independent, and

then we generalize the definitions to the situation with linkage

disequilibrium between multiple loci.

Let L~ ‘1, � � � ,‘Lf g be the set of all L loci under investigation, and

S~ ‘1, � � � ,‘sf g be the set of all s disease susceptibility loci that

determine the disease risk. For any two subsets, S1 and S2, of S (S1(S,

S2(S, and S1\S2~ 6 0), their penetrance given the combinatory

genotypes GS1
and GS2

respectively, can be described as

p D GS1
,GS2

jð Þ~f GS1
,GS2

ð Þ,

where p D :jð Þ represents the penetrance of a given combinatory

genotype, G: a combinatory genotype of the multiple loci, and f :ð Þ the

function denoting how combinatory genotypes determine the disease

penetrance.

For any given combinatory genotypes of S1 and S2, if

p D GS1
,GS2

jð Þ~f GS1
,GS2

ð Þ~f1 GS1
ð Þf2 GS2

ð Þ

is always true, the relationship between the two subsets of loci S1

and S2 is defined as ‘‘independently contributing’’ to the disease.

Otherwise, the relationship between S1 and S2 is defined as

‘‘epistasis.’’ Particularly, the relationship between a set of loci and

a null set is defined as epistasis.

A set of loci S1(S is an ‘‘epistatic module’’ if and only if the

relationship between S1 and its complement, :S1~S{S1, is

‘‘independently contributing,’’ that is, for any given genotype GS1

and G:S1
,

p D GS1
,G:S1

jð Þ~f GS1
,G:S1

ð Þ~f1 GS1
ð Þf2 G:S1

ð Þ,

and the relationship between any subset of S1, S
0

1(S1, and its

complement :S
0

1~S1{S
0

1 is epistasis.

Obviously, the set of disease susceptibility loci S consists of one

or more epistatic modules. We further verify that there is no

overlap between any two epistatic modules, and epistatic modules

are independent in both case and control populations (Text S1).

In genome-wide association studies where the SNPs are quite

dense, it is common that a SNP may be in LD with other SNPs.

To account for this situation, we define a group of SNPs that are in

LD with each other as an ‘‘LD set’’ and extend the above

definition of epistatic modules by replacing individual loci with LD

sets. Note that with this extension, all properties of epistatic

modules remain unchanged, as long as we treat an LD set as an

individual locus in the previous derivation.

The mechanism how a number of susceptibility SNPs

contribute to the disease risk through epistatic modules is shown

in Figure 1. The disease risk is determined by a number of epistatic

modules, each of which contributes to the disease independent of

the others. An epistatic module is composed of one or more

susceptibility SNPs, each of which may be in LD with some other

SNPs, forming an LD set. A disease susceptibility SNP, together

with the SNPs that are in LD with it, relies on other disease

susceptibility SNPs or LD sets in the same epistatic module to

affect the disease susceptibility. An epistatic module cannot be

further divided into smaller epistatic modules; hence epistatic

modules are the smallest genetic units that independently influence

the disease risk.

Bayesian Marker Partition Model
Suppose that in a population-based case-control study, Nd cases

and Nu controls are genotyped at a number of L SNP markers.

The genotypes for cases and controls are represented as

D~ d1, � � � ,dNd
ð Þ and U~ u1, � � � ,uNu

ð Þ, respectively, where

di~ di1, � � � ,diLð Þ0 and uj~ uj1, � � � ,ujL

� �0
denote the genotypes

of the i-th patient and the j-th unaffected individual at the L

markers, respectively. With the understanding of epistatic

modules, the L markers can be partitioned into Sz1 modules

M0, M1,…, MS, with M0 containing markers unlinked to the

disease and M1 to MS being epistatic modules.

Let Ii (i~1, � � � ,L) be an indicator of the assignment of the i-th

marker into one of the Sz1 modules, and I~ I1, � � � ,ILð Þ0 be a

vector representing the assignments for all of the L markers.

Obviously, Ii has Sz1 possible values 0,1, � � � ,S. Let lm be the

number of markers falling into the m-th module (m~0,1, � � � ,S).

We have that l0zl1z � � �zlS~L. Let Dm and Um be the

Figure 1. Relationship between phenotype and genotype, illustrated with epistatic modules. Disease-associated SNPs are contained in
epistatic modules. Disease-unassociated SNPs are outside the modules. SNPs with the same color form an LD set.
doi:10.1371/journal.pgen.1000464.g001
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genotypes of the sets of markers that belong to the m-th module in

the case and the control populations, respectively. Obviously, we

have that Di\Dj~ 6 0 when i=j and
SS

i~0 Di~D for the case

population, and Ui\Uj~ 6 0 when i=j and
SS

i~0 Ui~U for the

control population.

With these concepts, the problem of finding markers that have

epistatic interactions on the disease risk is equivalent to a problem

of assigning the markers to epistatic modules. Particularly, the

assignment for a marker can be done by first calculating the

probability of the observed data given a certain marker partition

pattern and then obtaining the posterior probability that the

marker belongs to each module using some sampling strategy. For

a clear presentation, we first derive a Bayesian model that assumes

independence between SNPs and then generalize the model to

account for the existence of LD sets.

The module M0 consists of markers that are unlinked to the

disease. Therefore, markers in D0 (the case population) should

follow the same distribution as those in U0 (the control

population). Let h0i~ h0i1,h0i2,h0i3ð Þ, i~1, � � � l0, be the probabil-

ities of occurrence of the three possible genotypes for the i-th

marker in M0, and H0~ h01, � � � ,h0l0ð Þ0 be the vector that is

composed of all probabilities of genotypes of the l0 markers

belonging to M0. Let n0ik and n’0ik be the number of individuals

that have the k-th genotype at the i-th marker in the case and the

control populations, respectively. The joint distribution of the

observed genotypes D0 and U0, given the partition I and the

parameters H0 can then be written as

p D0,U0 I,H0jð Þ~ P
l0

i~1
P
3

k~1
hn0ikzn’0ik

0ik : ð1Þ

Following the Bayesian approach, we assume that every h0i

(i~1, � � � ,l0) follows a Dirichlet distribution with the hyper-

parameter a~ a1,a2,a3ð Þ, that is, p h0i ajð Þ!P3
k~1 hak{1

0ik . Integrat-

ing out H0 in Equation (1), we obtain

p D0,U0 Ijð Þ~

P
l0

i~1

C
P3

k~1 ak

� �
C NdzNuz

P3
k~1 ak

� � P
3

k~1

C n0ikzn’0ikzakð Þ
C akð Þ

0
@

1
A,

ð2Þ

where C :ð Þ is the Gamma function.

For an epistatic module Mm (m~1, � � � ,S) containing lm SNPs,

there are a total of 3lm combinatory genotypes. Let

Hm~ hm1, � � � ,hm3lmð Þ and H’m~ h’m1, � � � ,h’m3lmð Þ be the proba-

bilities of occurrences of all combinatory genotypes in the case and

the control populations, respectively. Let nmk and n’mk be the

numbers of occurrences of the k-th combinatory genotype in the

case and the control populations, respectively. The distributions of

Dm and Um, given the parameters Hm and H’m, can be written as

p Dm I,Hmjð Þ~ P
3lm

k~1
hnmk

mk , and p Um I,H’mjð Þ~ P
3lm

k~1
h’n’mk

mk ,

respectively.

Assuming that Hm and H’m follow Dirichlet prior distributions

with hyper-parameters bm~ bm1, � � � ,bm3lmð Þ and

b’m~ b’m1, � � � ,b’m3lmð Þ, respectively, we integrate out Hm and

H’m and obtain

p Dm Ijð Þ~
C
P3lm

k~1 bmk

� �
C Ndz

P3lm

k~1 bmk

� � P
3lm

k~1

C nmkzbmkð Þ
C bmkð Þ , ð3Þ

and

p Um Ijð Þ~
C
P3lm

k~1 b’mk

� �
C Nuz

P3lm

k~1 b’mk

� � P
3lm

k~1

C n’mkzb’mkð Þ
C b’mkð Þ : ð4Þ

As the distributions of Dm and Um are independent, we have

p Dm,Um Ijð Þ~p Dm Ijð Þp Um Ijð Þ:

Putting the above likelihood functions together, we have the

posterior distribution of I, given the observed genotypes, as

p IjD,Uð Þ!p Ið Þ P
S

m~0
p Dm,Um Ijð Þ:

The prior distribution p Ið Þ need to be determined in advance.

For simplicity, we assume that the partition of the loci are

independent, and for each locus, without prior knowledge, the

probability that it belongs to the m-th module is rm (0ƒrmƒ1 andPS
m~0 rm~1). With these two assumptions, we have

p Ið Þ!PS
m~0 rlm

m . Note that when prior knowledge that can be

used to infer the relationship between a locus and the disease risk is

available, the corresponding rm could be updated accordingly. We

assume that all Dirichlet hyper-parameters are equal to 0.5 unless

otherwise specified.

Accounting for LD between Disease Susceptibility SNPs
We use a first-order Markov model to account for the situation

in which a set of SNPs are in LD with a disease susceptibility SNP

in an epistatic module, say, an LD set. For a clear presentation, we

refer to the disease susceptibility SNP as the core SNP and SNPs in

LD with it as peripheral SNPs.

Given a core SNP, the likelihood of the genotypes of a

peripheral SNP in the case population is

P
3

j~1
P
3

k~1
vjk

ojk ,

where vjk is the probability that the peripheral SNP has the k-th

genotype conditional on that the core SNP has the j-th genotype,

and ojk is the number of cases for which the core and peripheral

SNPs have the j-th and k-th genotypes, respectively.

Assuming Dirichlet priors with hyper-parameters

cj~ cj1,cj2,cj3

� �
for vj~ vj1,vj2,vj3

� �
, we integrate out

vj j~1,2,3ð Þ and obtain the posterior distribution of the genotypes

of the peripheral SNP in the case population conditional on the

core SNP as

P
3

j~1

C
P3

k~1 cjk

� �
C
P3

k~1 ojkz
P3

k~1 cjk

� � P
3

k~1

C ojkzcjk

� �
C cjk

� �
0
@

1
A:

Suppose that in a module Mm with lm SNPs, there are cm core

SNPs and lm{cm peripheral SNPs (m~1, � � � ,S). Let Vc be the set

of peripheral SNPs that are in LD with the c-th core SNP

(c~1, � � � ,cm). We have that the intersection of any two of these

sets is empty, while the union of all these sets contains all

peripheral SNPs. The posterior distribution of the genotypes of the

set of peripheral SNPs Vc in the case population conditional on the

c-th core SNP is given by

qc~P
i[Vc

P
3

j~1

C
P3

k~1 ccijk

� �
C
P3

k~1 ocijkz
P3

k~1 ccijk

� � P
3

k~1

C ocijkzccijk

� �
C ccijk

� �
0
@

1
A, ð5Þ
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where (ccij1, ccij2, ccij3) are Dirichlet hyper-parameters, and ocijk is

the number of cases for which the c-th core SNP has the j-th

genotype, and the i-th peripheral SNP has the k-th genotypes.

Putting Equations (3) and (5) together, the likelihood of the

genotypes in the case population Dm is

p Dm Ijð Þ~pcore P
cm

c~1
qc,

where pcore is given by Equation (3) as

pcore~
C
P3cm

k~1 bmk

� �
C Ndz

P3cm

k~1 bmk

� � P
3cm

k~1

C nmkzbmkð Þ
C bmkð Þ :

Similarly, by replacing the case population with the control

population, the likelihood of the genotypes in the control

population Um can be obtained as

p UmjIð Þ~ p’core P
cm

c~1
q’c,

where p’core is given by Equation (4) as

p’core~
C
P3cm

k~1 b’mk

� �
C Nuz

P3cm

k~1 b’mk

� � P
3cm

k~1

C n’mkzb’mkð Þ
C b’mkð Þ ,

and q’c is given by

q’c~

P
i[Vc

P
3

j~1

C
P3

k~1 c’cijk

� �
C
P3

k~1 o’cijkz
P3

k~1 c’cijk

� � P
3

k~1

C o’cijkzc’cijk

� �
C c’cijk

� �
0
@

1
A,
ð6Þ

where (c’cij1, c’cij2, c’cij3) are Dirichlet hyper-parameters, and o’cijk

is the number of controls for which the c-th core SNP has the j-th

genotype, and the i-th peripheral SNP has the k-th genotypes.

Finally, the likelihood of observing both the case and the control

populations is given by

p Dm,Um Ijð Þ~p Dm Ijð Þp Um Ijð Þ: ð7Þ

We also assume that all Dirichlet hyper-parameters are equal to

0.5 unless otherwise specified.

Accounting for LD between Disease Unassociated SNPs
The Bayesian marker partition model described above assumes

independence between SNPs that are unlinked to the disease.

Nevertheless the existence of LD may make distributions of

genotypes of these SNPs dependent. In the model discussed above,

there is no specific module for these linked disease-unassociated

SNPs. As a result, these SNPs could be partitioned into some

epistatic modules and negatively affect the correct partition of

these modules. We therefore propose the use of LD modules to

account for the existence of LD between disease-unassociated

SNPs.

Although the distributions of genotypes for markers in LD are

dependent in both the case and the control populations, as those

for markers in epistatic modules, the underlying principle between

LD markers and epistatic modules are quite different. For LD

markers, the distributions of genotypes are almost the same for the

case and the control populations, while for epistatic modules the

distributions of genotypes are different between the case and the

control populations. In order to incorporate this understanding

into the Bayesian partition model, we assume that other than the S

epistatic modules, there further exist T LD modules, labeled by

{{T , � � � ,{1}, in each of which loci are in strong LD with each

other.

We also use a first-order Markov model to account for LD

between the SNPs in an LD module. For an LD module Mm

(m~{T , � � � ,{1), we assume that there exists a core SNP c, and

the distributions of genotypes of all other (peripheral) SNPs in this

LD module depend on the genotype of this core SNP. Let V be

the set of the lm{1 peripheral SNPs that are in LD with the core

SNP. Using similar reasoning as for the epistatic modules, we

obtain that

p Dm,Um Ijð Þ~p’’coreq’’c:

p’’core is derived with a similar way as Equation (2) and is given by

p’’core~
C
P3

k~1 ak

� �
C NdzNuz

P3
k~1 ak

� � P
3

k~1

C nmkzn’mkzakð Þ
C akð Þ

,

where nmk and n’mk are the numbers of individuals that have the

k-th genotype at the core SNP in the case and the control

populations, respectively. q’’c is derived with a similar way as

Equation (6) and is given by

q’’c~ P
i[V

P
3

j~1

C
P3

k~1 gcijk

� �
C
P3

k~1 ocijkzo’cijk

� �
z
P3

k~1 gcijk

� �
0
@

P
3

k~1

C ocijkzo’cijkzgcijk

� �
C gcijk

� �
!

where gcij1,gcij2,gcij3

� �
are Dirichlet hyper-parameters, and ocijk

and o’cijk are the numbers of individuals for which the core SNP

has the j-th genotype, and the i-th peripheral SNP has the k-th

genotypes in the case and the control populations, respectively.

We also assume that all hyper-parameters are equal to 0.5 unless

otherwise specified.

With LD modules being incorporated, the posterior distribution

for the generalized indicator vector I~ {T , � � � ,{1,0,1, � � � ,Sf g
under the generalized Bayesian model is then

p I D,Ujð Þ!p Ið Þ P
S

m~{T
p Dm,Um Ijð Þ:

Gibbs Sampling Strategy for Marker Partitioning
The posterior distribution of the partition I given by the

above Bayesian partition model suggests the following Gibbs

sampler

p Ii~m I {i½ �,D,U
��� �

~
p Ii~m,I {i½ �,D,U
� �

PS
m’~{T p Ii~m’,I {i½ �,D,U

� � , ð8Þ

where m~{T , � � �{1,0,1, � � � ,S and I {i½ �~ I1, � � � ,Ii{1,ð
Iiz1, � � � ,ILÞ0. In order to calculate this sampler in an efficient

way, we compute
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mm~
p Ii~m,I {i½ �,D,U
� �

p Ii~0,I {i½ �,D,U
� �

~
p Ii~m,I {i½ �
� �

PS
m’~{T p Dm’,Um’ Ii~m,I {i½ �

��� �
p Ii~0,I {i½ �
� �

P
S

m’~{T
p Dm’,Um’ Ii~0,I {i½ �

��� �

~
p Ii~mð Þ
p Ii~0ð Þ

p D0,U0 Ii~m,I {i½ �
��� �

p D0,U0 Ii~0,I {i½ �
��� � p Dm,Um Ii~m,I {i½ �

��� �
p Dm,Um Ii~0,I {i½ �

��� �

for m~{T , � � � ,{1,0,1, � � � ,S, and then obtain

p Ii~m I {i½ �,D,U
��� �

~
mmPS

m’~{T mm’

:

With this sampler, a Gibbs sampling algorithm can be performed

as follow.

Step 1: Initialization. Assign module labels to indicators Ii for

i~1, � � � ,L, according to prior probabilities rm

(m~{T , � � � ,{1,0,1, � � � ,S).

Step 2: Gibbs sampling. Select an indicator Ii (i~1, � � � ,L)

at random and update its module label according to the

p o s t e r i o r p r o b a b i l i t i e s p Ii~m I {i½ �,D,U
��� �

m~{T , � � � ,{1,0,1, � � � ,Sð Þ.
Step 3: Repeat the above sampling iteration until conver-

gence or a pre-defined maximum number of iterations

being reached.

In order to calculate the Gibbs sampler, i.e., Equation (8), we

need to partition SNPs in epistatic and LD modules into core

SNPs and peripheral SNPs, say, to obtain structures of the

modules. Besides, the numbers of modules (S and T) are also

unknown. We will address these two questions in the following two

sections.

Obtaining Module Structures
Given a set of SNPs in an epistatic module, we need to partition

the SNPs into non-overlap LD sets. For each LD set, we need to

assign a core SNP. The partition of LD sets, together with the

assignment of a core SNP for each LD set, is referred to as the

structure of an epistatic module.

A naı̈ve method for obtaining the structure of a module is to

exhaustively search for all possible structures of the module and

then select the one with the maximum likelihood. Specifically, for

an epistatic module Mm (m~1, � � � ,S) containing lm SNPs, there

are 2lm{1 ways for selecting the core SNPs, corresponding to the

different ways of selecting non-empty subsets from the lm SNPs.

Furthermore, in the case that the number of core SNPs is cm, the

number of ways for associating the rest lm{cm peripheral SNPs to

the core SNPs is cm
lm{cm , since each peripheral SNP can be

assigned to one of the core SNPs, and the assignments are

mutually independent. Obviously, the number of all possible

structures of an epistatic module grows rapidly, making the

exhaustive search strategy practical only when the module

contains a small number of SNPs. We therefore propose the

following sampling approach to search for a reasonable module

structure when the exhaustive search strategy is hard to apply.

For an epistatic module Mm with lm SNPs, in which cm are core

SNPs, and the rest lm{cm are peripheral ones, we index the core

SNPs by numbers from 1 to cm, and we index the peripheral SNPs

by numbers from cmz1 to lm. We further introduce an indicator

vector R~ R1, � � � ,Rlmð Þ, representing the status of all SNPs in the

module. In this vector, Ri~0 (i~1, � � � ,cm) means that the i-th

SNP is a core SNP, and Ri~k i~cmz1, � � � ,lm,k~1, � � � ,cmð Þ
means that the i-th SNP is a peripheral SNP of the k-th core SNP.

Consider a peripheral SNP indexed by i (cmz1ƒiƒlm). The

posterior distribution of the indicator Ri, given the rest of the

indicators R {i½ �~ R1, � � � ,Ri{1,Riz1, � � � ,Rlmð Þ and the observa-

tion Dm and Um, can be written as

p Ri~k R {i½ �,Dm,Um

��� �
~

p Ri~k,R {i½ �,Dm,Um

� �
P

0ƒk’ƒcm
p Ri~k’,R {i½ �,Dm,Um

� �
~

p Ri~k,R {i½ �
� �

p Dm,Um Ri~k,R {i½ �
��� �

P
0ƒk’ƒcm

p Ri~k’,R {i½ �
� �

p Dm,Um Ri~k’,R {i½ �
��� � ,

where the likelihood function can be calculated in a similar way as
Equation (7). Assuming equal prior probabilities for all possible
structures of the module, the above posterior distribution suggests
the following Gibbs sampler for the peripheral SNP,

p Ri~k R {i½ �,Dm,Um

��� �
~

p Dm,Um Ri~k,R {i½ �
��� �

P
0ƒk’ƒcm

p Dm,Um Ri~k’,R {i½ �
��� � : ð9Þ

Consider a core SNP indexed by i (1ƒiƒcm). There are two

situations: (1) the core SNP has some peripheral SNPs, and (2) the

core SNP has no peripheral SNPs. In the former case, we need to

fix the indicator Ri~0. In the latter case, a Gibbs sampler can be

obtained as

p Ri~k R {i½ �,Dm,Um

��� �
~

p Dm,Um Ri~k,R {i½ �
��� �

P
0ƒk’ƒcm,k’=i p Dm,Um Ri~k’,R {i½ �

��� � ,
ð10Þ

where we exclude the situation in which the core SNP becomes its

own peripheral SNP.

The above Gibbs samplers suggest the following sampling

strategy:

Step 1: Initialization. Generate a random structure.

Step 2: Sampling. Select a SNP at random. If it is a peripheral

SNP, sample its indicator according to Equation (9); if it

is a core SNP with no peripheral SNPs, sample its

indicator according to Equation (10); otherwise keep its

indicator unchanged. After sampling, update the

indices and indicators of the SNPs.

Step 3: Repeat the above sampling step until convergence or

a pre-defined maximum number of iterations being

reached to obtain the posterior distribution of module

structures, and then sample a module structure

according to this distribution.

To further reduce the computational burden, we propose the

following forward and backward strategies that are very economy

in terms of computation time.

In the forward strategy, we consider three situations of adding a

SNP into an existing epistatic module. First, the SNP is itself a core

SNP, and there are no other SNPs in LD with it. Second, the SNP

is in LD with an existing core SNP, and this core SNP remains

unchanged. Third, the SNP is in LD with an existing core SNP,
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but this core SNP needs to be updated as the added SNP. To deal

with the first case, we try to create a new LD set to include the new

SNP as the core SNP in constant time complexity. To deal with

the second case, we try to add the new SNP as a peripheral SNP to

every existing LD set in linear time complexity, proportional to the

number of existing LD sets. To deal with the third case, we try to

add the new SNP as the core SNP and downgrade the previous

core SNP to a peripheral SNP for every existing LD set in linear

time complexity, also proportional to the number of existing LD

sets. Finally, we compare likelihood values of resulting structures of

the above efforts and select the structure with the highest

likelihood as the new module structure.

In the backward strategy, we also consider three situation of

removing a SNP from an existing epistatic module. First, the

SNP is in LD with a core SNP. Second, the SNP is itself a core

SNP with no other SNPs in LD with it. Third, the SNP is a core

SNP with some other SNPs in LD with it. The first and second

cases can be dealt with in constant time complexity. The third

case can be exhaustively searched for the new core SNP in

linear time complexity, proportional to the number of SNPs in

LD with the removed SNP. By comparing the likelihood values

of these three cases, we can obtain a new structure for the

module.

The exhaustive search strategy can provide optimal module

structures, but its computation time is acceptable only when a

module contains a small number of SNPs. The sampling strategy

takes uncertainty in the partitioning process into consideration

and can alleviate the computational burden when a module

contains a large number of SNPs. The forward and the

backward strategies can greatly reduce the computational

burden and offer sub-optimal module structures. To achieve a

reasonable trade-off between the computational burden and the

optimality of module structures, we also propose a hybrid

strategy in which we mainly perform the forward and the

backward strategies and periodically apply the exhaustive search

or the sampling methods. According to our experience, the

hybrid strategy is much faster than the exhaustive search and

the sampling methods and can yield similar results as the other

two methods in most cases. Therefore, we suggest the use of the

hybrid strategy.

Similar to epistatic modules, we need to also assign a core

SNP for each LD module. However, the situation is quite simple

for obtaining structures for LD modules, because an LD module

has only one core SNP, and thus the number of possible

structures for an LD module is equal to the number of SNPs in

the module. In the exhaustive search strategy, we can search for

the core SNP in linear time complexity, proportional to the

number of SNPs in the module. In the forward strategy, we

consider the situation of adding a SNP into an LD module, and

determine the structure by comparing the likelihood values of

two cases: (1) the added SNP is a peripheral SNP, and (2) the

added SNP is the core SNP. This can be done in constant time

complexity. In the backward strategy, we consider the situation

of removing a SNP from the module. If the removed SNP is not

the core SNP, we simply remove it. In the case that the deleted

SNP is the core SNP, we select a new core SNP from the

previous peripheral SNPs by exhaustive search, which can be

done in linear time complexity, proportional to the number of

SNPs remaining in the module. Since the exhaustive search

strategy is straightforward and already computationally economy

(linear complexity), we simply apply the exhaustive search

strategy to obtain structures for LD modules.

With the module structures being obtained, we are now able to

calculate the Gibbs sampler defined by Equation (8).

Sampling the Number of Modules
We assume that the numbers of epistatic modules (S) and LD

modules (T) are already known in the Gibbs sampling strategy for

marker partitioning. Nevertheless the values of S and T are usually

unknown in real applications. To address the uncertainty of S and

T, we adopt a reversible jump Markov chain Monte Carlo (RJ-

MCMC) procedure [26] as follows.

Step 1: Initialization. Assign S and T with proper positive

numbers (e.g., S = T = 1).

Step 2: Gibbs sampling under the current configuration (S,

T). Perform the Gibbs sampling algorithm a number

of n1L iterations using the current S and T. Record

P~p Ið ÞPS
m~{T p Dm,Um Ijð Þ.

Step 3: Propose a new configuration (S0, T 0). S and T are

selected at random for updating. Suppose that S is

selected, propose to increase S by 1 (S0/Sz1) with

probability pi or decrease S by 1 (S0/S{1) with

probability pd , where pi§0, pd§0, and pizpd~1. To

improve the sampling efficiency, we skip the increment

of S (or T) if there are empty modules and the

decrement of S (or T) if it is equal to 1.

Step 4: Gibbs sampling under the proposed configuration (S0,
T 0). Perform the Gibbs sampling algorithm a number of

n2L iterations using the proposed S0 and T 0. Record

P0~p Ið ÞPS0

m~{T 0 p Dm,Um Ijð Þ.
Step 5: Choose a new configuration. Keep the original

configuration (S, T) or accept the new configuration

(S0, T 0) according to the acceptance probability, which

is calculated as

a S,Tð Þ/ S0,T 0ð Þð Þ~min 1,
P0pd

Ppi

� �
if S is increased, or

a S,Tð Þ/ S0,T 0ð Þð Þ~min 1,
P0pi

Ppd

� �
if S is decreased:

Step 6: Keep repeating steps 2 to 5 all along with the Gibbs

sampling procedure for the posterior distribution of I.

With a sufficient number of the above RJ-MCMC sampling

procedure being repeated, the Markov chains for S and T could

achieve their stable distributions. In our studies, we use

pi~pd~0:5, n1~10, and n2~5.

Statistical Significance of Epistatic Modules
The RJ-MCMC procedure samples the posterior distributions

of the numbers of epistatic and LD modules, while the Gibbs

sampling algorithm gives us the posterior probability that a locus

belongs to a module and enables us to sample the indicators with

the use of their conditional distributions in a sequential way.

Starting from an initial (random) assignment of the indicators, the

Gibbs sampling procedure simulates a Markov chain whose

stationary distribution follows the distribution of the indicator

vector. When the Markov chain reaches its stationary distribution

after a number of burn-in iterations, we record candidate epistatic

modules and their posterior probabilities. The posterior probabil-

ity of an epistatic module represents the strength that the module is

associated with the disease and thus can be directly used to make

statistical inference. For example, biologists can select epistatic

modules with top posterior probabilities for further functional

analysis or biological experiments. Nevertheless, the statistical

significance of epistatic modules might be more desired by
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geneticists. We therefore provide in the following parts a

permutation test method and a ‘‘selection-testing-correction’’

approach for assessing the statistical significance of candidate

epistatic modules.

Permutation test. For a candidate epistatic module, we need

to test H0: the module is not associated with the disease versus H1:

the module is associated with the disease. The posterior probability

of a candidate module represents its strength of association with

the disease and can serve as a test statistic for hypothesis testing.

We therefore propose the following permutation test method on

the basis of posterior probabilities of candidate epistatic modules.

Step 1: Apply the sampling procedure to the original case-

control data with a certain parameter setting. Record

candidate epistatic modules, their module sizes, and

their posterior probabilities. Here, the size of a module

refers to the number of SNPs included in the module.

Step 2: Permute the case-control data by shuffling the case-

control labels. Apply the sampling procedure with the

same parameter setting to the permuted data. Record

the maximum posterior probability of sampled epistatic

modules for each module size.

Step 3: Repeat the above Step 2 a number of N times to obtain

N maximum posterior probabilities for each module

size.

Step 4: For each candidate epistatic module (suppose its size is s)

sampled from the original case-control data, count the

number of times that the N maximum posterior

probabilities for module size s are greater than or equal

to the posterior probability of the candidate module

and divide this count by N to obtain a p-value for the

module.

Selection-testing-correction. Although the permutation test

method can well control the type I error at the expected level, it is

computationally very expensive. To alleviate the computational

burden, we propose the following ‘‘selection-testing-correction’’

approach that uses the standard Chi-squared test with Bonferroni

correction to assess the statistical significance of candidate epistatic

modules.

Step 1: Selection. Apply the Gibbs sampling procedure to the

original data. Collect candidate epistatic modules

whose posterior probabilities are higher than a

predefined threshold.

Step 2: Testing. Apply the Chi-squared test to the selected

modules and obtain their p-values. In this procedure,

the p-value for a module is calculated by applying the

Chi-squared test to check the full interaction of core

SNPs in the module.

Step 3: Correction. Apply the Bonferroni correction to the

above p-values by multiplying them with the number of

all possible tests. For a module with c core SNPs, this

number is
L

c

� 	
, where L is the total number of SNPs

in the original case-control data.

In the above selection-testing-correction approach, we define

the statistical significance of a module as the Bonferroni corrected

Chi-squared p-value of the full interaction of core SNPs in the

module. There are several reasons to use such a definition. First,

according to our genetic model for complex diseases, it is the core

SNPs that contribute to the disease risk rather than the peripheral

SNPs that are in LD with the core SNPs. It is therefore natural

that we assess the statistical significance of a module on the basis of

the core SNPs. Second, in practice, the introduction of

redundancy of peripheral SNPs in the test procedure will make

the p-values much more conservative, because in the calculation of

the nominal (raw) p-values, the introduction of peripheral SNPs

usually increases the degrees of freedom greatly but does not

increase the values of the Chi-squared statistics much. Therefore

the nominal p-values often tend to be relatively larger. Finally, in

the Bonferroni correction procedure, the inclusion of peripheral

SNPs makes the number of all possible tests even larger, and thus

the correction for multiple testing is more severe. According to our

experiments, the selection-testing-correction approach is compu-

tationally very economy and can achieve similar performance as

the permutation test method.

After epistatic modules being identified by either of the above

methods, one may follow the convention in association studies to

claim some SNPs as representatives of epistatic modules.

Intuitively, core SNPs in the identified module can well serve as

such representatives, as we shall see in the simulation studies.

Nevertheless, we suggest that users of our method also look at

peripheral SNPs besides the attention on core SNPs, because

peripheral SNPs that are in LD with core SNPs also provide useful

information for the understanding of how the disease susceptibility

is being affected, as we shall see in the application of our method

to the real AMD data.

Web Resources
The URL for the software presented herein is as follows: http://

bioinfo.au.tsinghua.edu.cn/epiMODE

Results

Simulation Studies
Disease models. In order to test the power of the proposed

approach in the identification of SNPs that are associated with

disease risks, we design seven disease models with different

characteristics, as illustrated in Table 1. Model 1 contains two

disease loci, each of which contributes to the disease risk

independently. Model 2 is similar to model 1, except that the

disease risk increases only when both loci have at least one disease

allele. Model 3 contains two disease loci, in which the additional

disease allele at each locus does not further increase the disease

risk. Model 4 contains two disease loci and assumes that the

disease allele in one locus has the main effect on the disease risk.

When disease alleles in both loci are present, however, the effect is

inversed. Model 5 has two disease loci in which one locus has

none-zero marginal effect to the disease risk while the other has

absolutely no marginal effect. Model 6 is composed of four disease

loci, partitioned into two epistatic modules, each of which contains

two loci and has the same characteristics as model 4. Model 7 is

composed of four disease loci, partitioned into two epistatic

modules, each of which contains two loci and has the same

characteristics as model 5.

For each of the seven disease models, we simulate eight sub-

models that have different parameter settings. In the first four of

them, we assume that the real causative disease loci are un-

genotyped, and each of them is in linkage disequilibrium (r2 = 0.7,

see Text S1 for the calculation of r2) with a genotyped locus

(marker) that is observable in the data. In the other four, the

disease markers are the real causative disease loci themselves (or

in r2 = 1 LD). The minor allele frequencies (MAF) for the disease

markers (the same with the corresponding real causative disease

loci) are 0.05, 0.1, 0.2, and 0.5. Note that the causative disease

loci are independent. For model 1, the marginal effect size (see
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Text S1 for the definition) for locus A is set to 0.3, and the disease

prevalence is set 0.1. For model 2, the marginal effect size for

locus A is set to 0.5, and the disease prevalence is set to 0.01. For

model 3, the marginal effect size for locus A is set to 1.0, and the

disease prevalence is set to 0.1. For model 4 and 6, the parameter

f for the relative risk model that adjusts the effect of disease

genotypes relative to the wild ones is set to 3.0, and the disease

prevalence is set 0.01. For model 5 and 7, the marginal effect size

for locus A (two loci, each of which is in an epistatic module for

model 7) is set to 0.5, and the disease prevalence is set to 0.005.

For each disease model, we simulate 100 data sets for a sub-

model. Each data set contains 1,000 cases and 1,000 controls, in

which 1,000 markers are genotyped for each subject. The random

markers (markers that are not associated with the disease) are also

independent. The minor allele frequency (MAF) for each random

marker is chosen uniformly in [0.05, 0.5]. The detailed

information for generating simulated data for a disease model

with determined parameters is discussed in Text S1.

Comparison with existing methods. In order to illustrate

the performance of the proposed method, we implement

epiMODE, BEAM [23], stepwise logistic regression method [27],

and the classical single-locus Chi-squared test. BEAM uses a

Bayesian model with the Metropolis-Hastings algorithm to

partition disease loci into a group that is composed of loci

‘‘contributing independently to the disease’’ and a group contains

loci ‘‘jointly influence the disease risk’’ [23]. The stepwise logistic

regression method is a two-state strategy. In the first stage, the

most significant 10% SNPs are chosen according to their marginal

effects. In the second stage, all two-way interactions of the chosen

10% SNPs are enumerated and tested for statistical significance,

with marginal effects of the loci being excluded [27]. Besides these

two methods, the classical single-locus Chi-squared test with two

degrees of freedom is used as a benchmark. The details of these

methods are given below.

For the single-locus Chi-squared test, we perform a family of

Chi-squared tests (each for a single SNP) for each simulated data

set. In each test, the null hypothesis is that the SNP under test is

not associated with the disease, and the alternative hypothesis is

that the SNP is associated with the disease. To account for the

multiple testing problem, we apply the Bonferroni correction to

control the family-wise error rate (FWER) at the predefined

significance level (0.05). We claim that a SNP as being identified if

the corrected p-value for the SNP is less than this significance level.

For the stepwise logistic regression method, we perform a family

of logistic regressions with likelihood ratio tests (each for a pair of

SNPs screened out via the single-locus scan) for each simulated

data set. In each likelihood ratio test, the null hypothesis is that the

interaction of the pair of SNPs under investigation is not associated

with the disease, and the alternative hypothesis is that the

interaction of the pair of SNPs is associated with the disease. To

account for the multiple testing problem, we apply the Bonferroni

correction to control the FWER at the predefined significance

level (0.05). We claim both SNPs in a pair as being identified if the

corrected p-value for the pair is less than this level. The details of

this method are given in [27].

For BEAM, a Bayesian approach with a Metropolis-Hastings

algorithm is first applied to each simulated data set to screen out a

small number of candidate SNPs, and then all one-, two-, and

three-way interactions of the candidate SNPs are checked with the

use of a B-statistic [23]. In each test, the null hypothesis is that the

SNP (or interaction of SNPs) under investigation is not associated

with the disease, and the alternative hypothesis is that the SNP (or

interaction of SNPs) is associated with the disease. To account for

the multiple testing correction problem, the Bonferroni correction

is also applied to control the FWER at the predefined significance

level (0.05). We claim all SNPs in an interaction as being identified

if the corrected p-value for the interaction is less than this level.

The details of this method are given in [23].

For epiMODE, the selection-testing-correction scheme is

adopted. For each simulated data set, we set all Dirichlet hyper-

parameters as 0.5 and the prior probability that a SNP belongs to

an epistatic or LD module as 0.01. We run 200L (L is the number

of SNPs in the data set) iterations of the Gibbs sampling

procedure, in which the first half is taken as burn-in, and the

second half is used to record candidate modules and their posterior

probabilities (in every L iterations). In the selection step, all

candidate modules with posterior probabilities higher than a

predefined cut-off (0.20 in our studies) are screened out. In the

testing step, we apply a Chi-squared test to each selected module

and obtain its p-value, as described in the method section. In the

correction step, we again apply the Bonferroni correction to

control the FWER at the predefined significance level (0.05). If the

corrected p-value of a module is less than this level, we report the

module as being identified and further claim core SNPs in the

module as being identified.

For each of the above methods, we count a positive if all disease-

associated SNPs in a simulated data set are identified, and we

calculate the power of the method for a sub-model as the

proportion of positives in all simulated data sets for the sub-model

(100 data sets for each sub-model in our simulation studies).

Therefore, powers are calculated at the same significance level

(0.05) for all methods (verification is provided in Text S1). This

scheme for comparing power is also used in existing literature

[23,27].

The comparison of the powers for the four methods is shown in

Figure 2. For model 1 where the disease loci have no epistatic

interactions, the stepwise logistic regression method has no power

at all, because the marginal effects of the loci is excluded in the

second stage. The other three methods get similar powers, while

epiMODE performs slightly better than the other two (Figure 2A).

Table 1. Relative risk for combinatory genotypes of disease
models.

Disease
Model Locus A Locus B

BB Bb bb

Model 1 AA 1 1+f (1+f)2

Aa 1+f (1+f)2 (1+f)3

aa (1+f)2 (1+f)3 (1+f)4

Model 2 AA 1 1 1

Aa 1 (1+f)2 (1+f)3

aa 1 (1+f)3 (1+f)4

Model 3 AA 1 1 1

Aa 1 1+f 1+f

aa 1 1+f 1+f

Model 4 AA 1 1 1

Aa f 1/f 1/f

aa f 1/f 1/f

Model 5 AA 1/(1-MAF)2 0 1/(1-MAF)2

Aa 0+f 1/(1- MAF2-(1-MAF)2)+f 0+f

aa 0+f 0+f 0+f

doi:10.1371/journal.pgen.1000464.t001
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For models 2 and 3, the two disease-associated SNPs have

approximate multiplicative and dominant interactions, respective-

ly. As a result, these loci have non-negligible marginal effects and

can thus be detected by all of the four methods, though the

proposed epiMODE approach generally got moderately higher

power than the others (Figures 2B and 2C). For models with

moderate epistasis (models 4 and 6), epiMODE outperforms

BEAM, and BEAM in turn outperforms the stepwise logistic

regression and the single-locus Chi-squared test (Figures 2D and

2F). For models with strong epistasis in which at least one locus has

Figure 2. Comparison of epiMODE, BEAM, stepwise logistic regression (LR), and the classical single-locus Chi-squared test on seven
disease models (A–G). For each parameter setting, the power is calculated as the proportion of simulated data sets in which all markers associated
with the causative SNPs are indentified at the significance level 0.05 after Bonferroni correction. Each data set contains 1,000 cases and 1,000 controls,
in which 1,000 markers are genotypes for each subject. The absence of bars stands for zero power.
doi:10.1371/journal.pgen.1000464.g002
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no marginal effect (models 5 and 7), epiMODE significantly

outperforms the stepwise logistic regression method. BEAM got a

little power when there is only one epistatic module (model 5) but

lost all the power when there are two modules in the model (model

7). The single-locus Chi-squared test has no power at all no matter

what parameters are selected for the model (Figures 2E and 2G).

Although both the proposed epiMODE approach and the

existing BEAM method rely on the Bayesian inference principle,

the fact that the proposed method achieves significantly higher

power than BEAM results from the following two major reasons.

First, the Gibbs-sampling strategy that updates one locus at a time

conditional on the current status of other markers may be more

suitable for the Bayesian model used here than the Metropolis-

Hastings algorithm that is used by BEAM. Because the dimension

of the indicator vector that represents the property of each marker

is very high, most of the search space has very low probability

density. Consequently, if we randomly choose a vector that has

several factors differing from the current indicator vector, the

probability that the random walk will be rejected is very high,

thereby resulting to an inefficient sampling process. Second, and

may be more fundamental for real human complex diseases rather

than that in our simulation studies where the models used are

relatively simple, the proposed Bayesian partition model takes

multiple epistatic and LD modules into consideration and is

suitable for different disease models, while BEAM could be seen

as, in some sense, a special case of our model in which the number

of epistatic modules is equal to two, and the number of LD

modules is equal to zero. With this understanding, if a case-control

data set is sampled from a disease model that has more than two

epistatic modules with more than one locus in each module, it is

almost impossible for BEAM to identify all modules when the

marginal effects of the loci are subtle.

In contrast to the epiMODE approach, the stepwise logistic

regression method loses its power in both stages. In the first stage,

the stepwise logistic regression does not account for epistatic

interactions, while in the second stage the marginal effect is

excluded from the test statistic. Results for model 1 and model 5

illustrated these disadvantages, respectively. The proposed ap-

proach, however, tends to assign loci with stronger marginal effects

into epistatic modules and then attract loci that have interactions

with the already assigned loci into the same module. Since both

marginal and interactive effects are utilized effectively in the Gibbs

sampling procedure, the proposed approach results in significantly

higher power than the stepwise logistic regression in almost all

simulation models.

Note that we set all Dirichlet hyper-parameters to 0.5 and use

the sampling strategy to obtain module structures. A detailed

analysis shows that epiMODE is robust to the selection of Dirichlet

hyper-parameters (Text S1).

Performance of the permutation test method. In the

above comparison studies, we use the selection-testing-correction

approach to assess statistical significance of epistatic modules.

Although this approach can greatly reduce the computational

burden, it remains interesting to see whether this approach can

achieve comparable performance as the permutation test method.

We therefore compare the powers of the permutation test method

and the selection-testing-correction approach.

The power for the selection-testing-correction approach is

calculated using the method described in the previous section. The

power for the permutation test method is calculated as follows. For

each simulated data set, we run 200L (L is the number of SNPs in

the data set) iterations of the Gibbs sampling procedure, in which

the first half is taken as burn-in, and the second half is used to

record candidate epistatic modules and their posterior probabil-

ities (in every L iterations). After this, we generate 1,000 permuted

data sets for each simulated data set by shuffling the disease labels.

For each permuted data set, we also run the Gibbs sampling

procedure (200L iterations) and record the maximum posterior

probability for each module size. Finally, for each candidate

epistatic module (suppose its size is s), we calculate the proportion

that the recorded maximum probabilities for module size s are

greater than or equal to the posterior probability of the candidate

module to obtain its p-value. If the p-value of a module is less than

a predefined significance level (0.05), we report the module as

being identified and claim core SNPs in the module as being

identified. If all disease-associated SNPs in a simulated data set are

identified, we count a positive. The power of the permutation test

method for a sub-model is then calculated as the proportion of

positives in all simulated data sets for the sub-model (100 data sets

for each sub-model in our simulation studies).

The comparison of the powers of the two methods is shown in

Figure 3. We can see from the figure that the powers of the two

methods are very close to each other for most situations, suggesting

that both approaches work well. We also notice that the

permutation test method can achieve slightly higher power than

the Chi-squared test approach especially for low MAFs and/or

when the disease-associated SNPs themselves are in LD (r2 = 0.7 in

the simulation studies) with the un-genotyped causative SNPs.

This observation suggests that the permutation method using

posterior probability may better utilize the LD information to

achieve a high power, as will be analyzed in the next section.

Impact of peripheral SNPs. In the above simulation studies,

we assume independence between genotyped SNPs. In real

genome-wide association studies, however, it is common that a

SNP may be in LD with some other SNPs. We use model 5 as an

example to simulate this situation and to demonstrate the

capability of our approach in dealing with the existence of LD

between SNPs.

In the original model 5, there is an epistatic module in which

two disease susceptibility SNPs contribute to the disease risk

through their interactive effects. In other words, there exist two

core SNPs and no peripheral SNPs in this module. To simulate the

existence of peripheral SNPs, we extend this model by adding two

peripheral SNPs, each in LD (r2 = 0.7) with a core SNPs.

Consequently, we have in the extended model an epistatic module

that is composed of two LD sets, each containing a core SNP and a

peripheral SNP. To simulate the existence of LD modules, we

generate four SNPs with MAFs being 0.05, 0.1, 0.2, and 0.5,

respectively. For each of these SNPs, we further add a SNP in LD

(r2 = 0.7) with it. Each added peripheral SNP has the same MAF as

the corresponding core SNP. As a result, we have four LD

modules in the extended model, each containing a core SNP and a

peripheral SNP. Since ten more SNPs (two for the epistatic

module and eight for LD modules) are added in the above

modification, we delete ten disease-unassociated SNPs at random

to maintain the total number of SNPs as 1,000.

The performance of epiMODE in the detection of the two

disease susceptibility SNPs for the original and the extended

models under different parameter settings is compared in Figure 4,

in which Figure 4A shows powers of the selection-testing-

correction approach, and Figure 4B shows powers of the

permutation test method. In general, epiMODE achieves higher

power with the addition of SNPs that are in LD with the disease

susceptibility SNPs. Particularly, this observation becomes more

distinct for parameter settings in which the powers of the original

model are quite low (MAFs = 0.05 and 0.1). In other words,

epiMODE can be more powerful in detecting disease susceptibility

Epistatic Module Detection with a Bayesian Model

PLoS Genetics | www.plosgenetics.org 11 May 2009 | Volume 5 | Issue 5 | e1000464



SNPs when there exist some other SNPs that are in LD with the

disease susceptibility ones.

The power of epiMODE with the selection-testing-correction

procedure depends on both the posterior probabilities of epistatic

modules given by the sampling procedure and p-values calculated

by the Chi-squared test with Bonferroni correction. The

improvement in power when peripheral SNPs included is mainly

due to the improvement in the posterior probabilities of the

modules. It is one of the advantages of our Bayesian model that it

can describe the LD between core and peripheral SNPs and then

utilize this information to detect the modules. The inclusion of

peripheral SNPs in a module increases the likelihood of the

observed case-control data and consequently increases the

posterior probability of the module in the sampling procedure,

Figure 3. Comparison of the two methods for obtaining statistical significance for epistatic modules.
doi:10.1371/journal.pgen.1000464.g003
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making the module easier to be screened out in the selection step.

As a result, the power is improved. Nevertheless, the Chi-squared

statistic, which does not account for LD, may limit the

improvement in power in the testing and correction procedures.

As we can see from Figure 4A, although the powers for most sub-

models are improved when peripheral SNPs are included, the

powers for sub-models in which the disease-associated SNPs are in

LD (r2 = 0.7) with the un-genotyped causative SNPs are in general

not higher than the powers for sub-models in which the disease-

associated SNPs are the causative SNPs themselves (r2 = 1). This is

natural because the signal of indirect association is usually harder

to be detected [28].

In contrast to the selection-testing-correction approach, the

improvement in power of the permutation test method purely

depends on the increase in the posterior probabilities of epistatic

modules in the sampling procedure and is not restricted by the

post hoc Chi-squared test. Consequently, the permutation test

method achieves higher power when peripheral SNPs are included

in most cases, especially when the disease-associated SNPs (core

SNPs) are in LD (r2 = 0.7) with the un-genotyped causative SNPs

(Figure 4B). We also notice that, the power (0.98) for the second

sub-model (MAF = 0.1, r2 = 0.7) that includes peripheral SNPs is

much higher than the power (0.76) for the sixth sub-model

(MAF = 0.1, r2 = 1) that contains no SNPs in LD with the disease-

associated SNPs. This observation suggests that, with the

integration of LD information, epiMODE is capable of detecting

indirect subtle associations in which the causative SNPs are un-

genotyped. With the development of genotyping (and sequencing)

technology, genome-wide case-control data become more and

more dense, and more LD information will be supplied.

epiMODE, with its capability of utilizing LD information, is

especially suitable for this kind of data.

Distribution of the number of modules. We use model 7

as an example to demonstrate the performance of the RJ-MCMC

procedure in addressing the uncertainty of the numbers of epistatic

and LD modules. In the original model 7, there exist two epistatic

modules, each containing two disease susceptibility SNPs. We

extend the seventh parameter setting for model 7, in which the

MAFs for all disease loci are 0.2, and the disease markers are the

real disease causative loci themselves (r2 = 1). To simulate the

existence of LD modules, we generate four SNPs with MAFs being

0.05, 0.1, 0.2, and 0.5, respectively. For each of these SNPs, we

further add a SNP in LD (r2 = 0.7) with it. Each added peripheral

SNP has the same MAF as the corresponding core SNP.

Consequently, we have four LD modules in the extended model,

each containing a core SNP and a peripheral SNP. Since eight

SNPs are added in the above procedure, we delete the same

number of disease-unassociated SNPs at random to maintain the

total number of SNPs as 1,000.

For the extended model in which S = 2 and T = 4, we apply

epiMODE to detect the disease susceptibility SNPs, and we record

the traces of the numbers of epistatic and LD modules sampled by

the RJ-MCMC strategy. The results are shown in Figure 5.

Starting from initial values (S = T = 1), the Markov chain gradually

reaches its stationary distribution. Specifically, after the burn-in

(100L iteration), the probabilities for S to be 1, 2 and 3 are 0.0389,

0.5767 and 0.3844, respectively, and the probabilities for T to be

3, 4 and 5 are 0.0778, 0.5889 and 0.3333, respectively. These

results suggest that the RJ-MCMC strategy is effective in handling

the uncertainty of the numbers of epistatic and LD modules.

A Genome-Wide Association Study on AMD
In order to verify the capability of the proposed approach in the

detection of epistatic interactions in real genome-wide association

studies, we apply epiMODE to an Age-related Macular Degener-

ation (AMD) data set [20], which contains 103,611 SNPs

genotyped with 96 cases and 50 controls.

The authors of the original paper reported that two SNPs,

rs380390 and rs1329428, were believed to be significantly

associated with AMD. Our method successfully indentifies both

of the two SNPs through the identification of an epistatic module

that included these two SNPs (two more SNPs are also indentified

in the same epistatic module, and the posterior probability of the

module is above 0.9, see Figures 6 and 7). The nominal p-values

for rs380390 and rs1329428 are 1.7561026 and 3.6461026,

respectively, according to the Chi-squared test with two degrees of

freedom. Our method also indentifies two novel SNPs, rs1394608

and rs3743175, by detecting an epistatic module that includes

both loci (two more SNPs in LD with them are also indentified in

the same epistatic module, and the posterior probability of the

module is greater than 0.9, see Figures 6 and 7). The nominal p-

values for these two SNPs are 8.8161025 and 1.7661023,

respectively, according to the Chi-squared test with two degrees

of freedom. Note that the p-value for the combination of

Figure 4. Performance of epiMODE on disease models with and without peripheral SNPs. (A) Results of the selection-testing-correction
approach. (B) Results of the permutation test method. The original model 5 is used as the disease model without peripheral SNPs. The extended
model 5 in which each of the two core SNPs has a peripheral SNPs is used as the disease model with peripheral SNPs.
doi:10.1371/journal.pgen.1000464.g004
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rs1394608 and rs3743175 is 7.3961027, while the p-value for the

combination of rs380390 and rs1329428 is only 1.8461025,

according to the Chi-squared test with eight degrees of freedom.

The distributions of the combination of rs1394608 and

rs3743175 in cases and controls are shown in Figures 8A and

8B, respectively. According to Chi-squared tests with four degrees

of freedom, these two SNPs are independent in controls (p-

value = 7.5061021) and dependent in cases (p-value = 3.2761023).

We also infer the genotype frequencies of the combination of these

two SNPs according to their distributions in controls and the

Hardy-Weinberg equilibrium (HWE), and we further infer the

penetrance for the combination of these two SNPs according to

their distributions in cases and the inferred genotype frequencies,

as shown in Figure 8C (see Text S1 for details of inferring

genotype frequencies and the penetrance). The penetrance of

genotypes of rs1394608 differs stronger from that of rs3743175,

suggesting that rs1394608 may be the dominant locus for disease

susceptibility. Specifically, the homozygote TT of rs1394608 is

responsible for disease risk significantly higher than the heterozy-

gous and the other homozygous genotype. However, the effect of

rs1394608 is strongly regulated by rs3743175, especially for the

homozygous genotype TT of rs1394608. The penetrance for the

combination genotype TT/CC (for rs1394608 and rs3743175,

respectively), is 9.6461022, significantly larger than the pene-

trance for the combination genotype TT/CT and the penetrance

for the combination genotype TT/TT. Odds ratio values in table 2

also give similar results. From the above analysis, we infer that the

relationship between the combination of SNPs rs1394608 and

rs3743175 and the disease risk is a classic epistatic interaction, in

which one dominant variant locus (rs1394608) is regulated by the

other locus (rs3743175). In the following part, we perform

functional analysis of these two SNPs.

AMD is the primary cause of irreversible visual loss in the

Western world [29]. The clinical hallmark of AMD is pathological

extracellular deposits in retinal called drusen. Previous single-locus

studies have identified the complement factor H (CFH) and the

HtrA serine peptidase 1 (HTRA1) as two major risk genes for

AMD [30–32]. Despite the complex etiology of AMD, no

significant epistasis has been identified by BEAM in the genome-

wide case-control data used in this study.

The most significant epistatic effect we identified is between

SNPs rs1394608 and rs3743175. Interestingly, there is another

SNP rs2828155 with exactly the same genotype distribution as

rs3743175 among all case/control samples (rs2828155 is also

detected by epiMODE in the same module with rs1394608 and

rs3743175, see Figures 6 and 7); therefore the epistasis may also

exist between rs1394608 and rs2828155.

rs1394608 resides within the intron of SGCD, a gene located on

chromosome 5q33-34, which has been implicated in AMD [33,34]

and predispose to drusen formation [35]. SGCD is the delta subunit

of the sarcoglycan complex, a component of the dystrophin-

glycoprotein complex, linking the cytoskeleton to the extracellular

matrix. The sarcoglycan complex involves in plasma membrane

deposition, and the co-expression of SGCD and SGCB (beta

subunit) is responsible for delivery to and retention of sarcoglycan

complex at the cell surface [36]. Defects in SGCD are the cause of

limb-girdle muscular dystrophy type 2F (LGMD2F) and dilated

cardiomyopathy 1L (CMD1L). The detected SNP rs1394608,

together with all 16 SNPs of strong LD (r2.0.8) within 1 Mb

neighboring region, are all significantly associated with the

expression of FBLN1 (p-value,161027, according to [37]), a

gene belongs to the fibulin family of extracellular matrix proteins.

Other members (FBLN3, FBLN5, FBLN6) of the family have been

associated with AMD [38–41], and various evidences support that

FBLN1 may also play a role in AMD [39,42–45]. Specifically,

FBLN1 can act as a cofactor for the matrix metalloprotease

ADAMTS1 and play important roles in the degradation of

proteoglycans by ADAMTS1 during pathological conditions

induced by inflammatory processes [46]. Therefore variants in

SGCD may lead to AMD in a similar way to HTRA1, which may

regulate the degradation of extracellular matrix by facilitating

access of other degradative matrix enzymes, such as matrix

metalloproteinases to their substrates [47].

Figure 5. Distributions of the numbers of epistatic and LD
modules. Model 7 with parameters MAF = 0.2 and r2 = 1 is extended to
include two epistatic modules and four LD modules. Results are
obtained with parameters n1 = 10 and n2 = 5.
doi:10.1371/journal.pgen.1000464.g005

Figure 6. Posterior probabilities of epistatic modules identified
in the AMD data set. The prior probability that a marker is involved in
a module is set to 10/103611. The cutoff posterior probability for
reporting an epistatic module is 0.9.
doi:10.1371/journal.pgen.1000464.g006
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rs3743175 resides within the intron of SCAPER/ZNF291, a

gene located on chromosome 15q24. Iyengar et al [34] have also

identified linkage signal for a marker in the nearby locus 15q21.

A weak linkage signal on chromosome 15q has also been

observed in another full-genome scan [48]. Further, translocation

of 15q24 had been found in a patient with visible disc drusen

[49]. Sequence analysis [50] identified in SCAPER an unstable

non-coding tandem repeat, an important form of mutation

responsible for several neurological, neurodegenerative and

neumuscular disorders [51]. The detected SNP rs3743175 has

Figure 7. Structures of epistatic modules identified in the AMD data set. Double arrowheads connect core SNPs in epistatic modules. Single
arrowheads link peripheral SNPs to core SNPs.
doi:10.1371/journal.pgen.1000464.g007

Figure 8. Distributions of genotypes of rs1394608 and rs3743175 in the AMD data set and the penetrance estimated for
combinatory genotypes of these two SNPs. (A) The distribution of genotypes of rs1394608 and rs3743175 in the case population. (B) The
distribution of genotypes of rs1394608 and rs3743175 in the control population. (C) The estimated penetrance for the combination of rs1394608 and
rs3743175, assuming that the disease prevalence is 0.01. The relative values for the penetrance maintain the same when the population prevalence is
alternatively assumed. It is shown that rs1394608 could be seen as the dominant-effect locus for the disease risk, and its effect is strongly regulated
by rs3743175.
doi:10.1371/journal.pgen.1000464.g008
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the strongest association with the expression of the gene itself (p-

value = 9.5610214).

The mechanism for the epistasis between rs1394608 in SGCD

and rs3743175 in SCAPER is unclear. We speculate that SCAPER

may exert influence to SGCD susceptibility through the regulation

of aging process, as evidences show both genes are involved in cell

cycle regulation and DNA repair. eQTL analysis [37] shows that

rs1394608 is significantly associated with the expression of RAD9B

(p-value,161027), a novel component of the 9-1-1 cell-cycle

checkpoint response complex [52], while rs3743175 is significantly

associated with the expression of SCAPER, a novel regulator of cell

cycle progression [53]. We also find that the DNA repair gene

ERCC6, which plays roles in the aging process and predisposes to

AMD [54], is significantly (p-value,161024) co-expressed with

SGCD and SCAPER across more than 40 human tissues [55]. Co-

expression analysis also finds that both SGCD and SCAPER are

significantly correlated with MASP1 (p-value,161022) and

MASP2 (p-value,161025), activators of the complement pathway.

Together with the report of synergic effect between ERCC6 and

CFH in predisposing AMD [54], the above analyses suggest clues

for the link between the aging component and the immune

component in the etiology of AMD.

The third SNP rs2828155 locates in an about 4 Mb intergenic

region in chromosome 21q21.1, a region has also been implicated

in AMD [35]. ADAMTS1 and ADAMTS5 lie about 4 Mb

downstream of the SNP. There is possibility that rs2828155 may

regulate the expression of these two enzymes, and then the

epistasis between rs2828155 and rs1394608 is more straightfor-

ward: rs2828155 regulates the enzyme ADAMTS1 and rs1394608

regulates FBLN1. As FBLN1 can act as a cofactor of ADAMTS1

and plays an important role in the degradation of proteoglycans by

ADAMTS1 during pathological conditions induced by inflamma-

tory processes [46], it is possible that rs2828155 and rs1394608

have epistatic effect in AMD. Linkage signals for AMD from the

two loci have been detected in the same linkage scan [35].

In summary, our association study suggests the existence of

epistasis in AMD, while the functional analysis provides new

insights for the understanding of the epistasis from the biological

point of view. Certainly, further work, especially experimental

verification of the above epistasis, is necessary in order to confirm

the roles of the identified SNPs and their epistasis in AMD.

A Genome-Wide Association Study on Parkinson’s
Disease

We further apply our approach to a genome-wide case-control

data set of Parkinson’s disease [21,22], which contains 408,803

SNPs genotyped with 270 cases and 271 controls. With the use of

epiMODE, we identify 12 independent contributing markers with

posterior probabilities of associations greater than or equal to 0.9.

The p-values for these markers, obtained by Chi-squared tests with

two degrees of freedom, are shown in Table 3, which suggest that

7 out of the 12 markers are statistically significantly. The original

paper [21] only tests SNPs that give successful genotypes in more

than 95% samples. As a result, the significant markers identified by

our method are all excluded. In our analysis, we run our method

on the original data without discarding any SNP.

The fact that no interaction effect is detected may be partly due

to the disease model itself, which may have no strong interaction

effects. Another reason may be the missing genotype problem that

aggravates the insufficiency of the sample size in mapping epistatic

effects. In the detection of a k-locus interaction, if the genotype

missing rate is ri (i~1, � � � ,k) for each locus, the expected

percentage of samples that could be used is only Pk
i~1 1{rið Þ,

which decreases fast with k, the number of loci in the interaction,

and makes the power for detecting high-order interactions even

lower.

Discussion

In this paper, we explicitly define epistatic modules as basic

genetic units that influence the disease susceptibility and put

forward a Bayesian marker partition model to explain the

observed case-control data. We develop a Gibbs sampling strategy

to simulate the posterior distributions that markers belong to

epistatic modules and further resort to hypothesis testing to screen

out statistically significant modules. We extensively assess the

effectiveness of the proposed epiMODE approach. In simulation

studies, epiMODE significantly outperforms all other methods. In

the application to the Age-related Macular Degeneration (AMD)

data, epiMODE successfully identifies two loci that are known to

be associated with the disease, and suggests the epistatic

interaction of two other loci. In the application to the Parkinson’s

disease data, epiMODE identifies seven loci that might contribute

to the disease susceptibility.

The success of the proposed approach can be attributed to a

combination of several aspects. First, with the explicit definition of

Table 2. Odds ratios for rs3743175 in SCAPER and rs1394608
in SGCD.

SNP SGCD rs1394608

TT TC CC

SCAPER
rs3743175

TT 10.67 (0.98, 115.68) 1.65 (0.16, 17.47) 1.00

TC 30.67 (2.52, 373.55) 9.60 (0.95, 96.92) 10.67 (0.82, 138.22)

CC 60.00 (3.04,
1185.03)

0.00 Inf

Odds ratios with 95% confidence intervals in parentheses were calculated to
compare each genotypic combination to the baseline of homozygosity for
common allele at rs3743175 and less common allele at rs1394608 (TT/CC).
doi:10.1371/journal.pgen.1000464.t002

Table 3. p-values for SNPs with posterior probabilities greater
than or equal to 0.9.

Index in the data dbSNP ID p-value

6321 rs12069733 1.7761027

52635 rs6757197 6.8961027

122959 rs1504212 4.3161028

142148 rs557074 4.6061028

172163 rs850084 2.2061028

177104 rs6460033 4.4561027

201738 rs7846412 5.1361027

215060 rs10963676 5.4661028

234666 rs2666781 5.1661027

240134 rs4746675 8.0361028

257981 rs12364577 9.2161028

358054 rs9952724 7.78610210

The nominal p-value for Bonferroni corrected significant level of 0.05 is
1.2261027.
doi:10.1371/journal.pgen.1000464.t003
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epistatic modules, our approach is able to capture patterns of

epistatic interactive effects of multiple loci in a native way. Second,

the incorporation of LD information between markers in epistatic

modules greatly improves the power of our method in the

detection of indirect subtle associations. Third, the introduction of

LD modules further minimizes the possibility of assigning disease-

unassociated loci into epistatic modules. Fourth, the Gibbs

sampling strategy is effective in obtaining the posterior distribu-

tions that disease-associated loci belong to epistatic modules.

Finally, the native identification of interactive effects of multiple

loci (epistatic modules) instead of enumerating combinations of

SNPs makes our approach capable of and suitable for dealing with

large scale case-control data.

Our marker partition model is proposed from the Bayesian

perspective, and thus a natural advantage of this model is its

capability of incorporating prior biological knowledge about

individual SNP markers, such as their locations (e.g., coding

region, promoter region, etc.), genotype frequencies, and LD

information. Nevertheless, some parts in our approach are not

formulated from the pure Bayesian perspective, mainly for the

consideration of reducing the computational burden. Structures of

epistatic modules are represented by results of searching

procedures (exhaustive/sampling/greedy) rather than averaged

over all possible structures according to their posterior probabil-

ities because this part is heavily used by the up-level Gibbs

sampling algorithm. The standard Chi-squared test with Bonfer-

roni correction is also much more computationally economy than

the permutation test method. Such efforts for greatly reducing the

computational burden are necessary in handling large scale case-

control data sets, which may contain more than 500,000 SNPs and

have been very common in recent genome-wide association

studies.

Certainly, the proposed approach can further be improved from

the following directions. First, the assumption of equal values for

all Dirichlet priors in the Bayesian marker partition model is

obviously for the purpose of seeking for simplicity. Although

different priors do not yield very different results, careful selection

of priors is still worth investigating. One possibility is to

systematically minimize the impact of priors using techniques

such as prior annealing [56]. Another possibility is to select priors

that reflect existing biological knowledge, such as the rich

genotype frequency and LD information from the International

HapMap Project [57,58]. Second, although our experience

suggests that the current Gibbs sampling strategy works well,

some sophisticated sampling strategy such as the ‘‘split-merge’’

algorithm [59] might be incorporated to further improve the

efficiency of the sampling strategy. Finally, currently we do not

formulate the marker partitioning procedure from the viewpoint of

mixture models, such as the Dirichlet process (DP) mixture model.

Since a DP mixture model assumes an infinite number of mixture

components and thus provides more flexibility in controlling the

complexity of the model [60,61], it would be interesting to explore

the possibility of incorporating the DP mixture model into

genome-wide association studies.

Supporting Information

Text S1 Epistatic module detection for case-control studies: a

Bayesian model with a Gibbs sampling strategy.

Found at: doi:10.1371/journal.pgen.1000464.s001 (0.21 MB PDF)
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