The Open Medical Informatics Journal, 2008, 2, 1-20 1

Development of an Integrated Suite of Software in Analysing of Large

DNA Databases
K.S. Kong' and E.Y.K. Ng"*

'DS Center/[EP, DSO National Laboratories, 20 Science Park Drive, Singapore 118230

School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore

639798

Abstract: The work showed that the integrated suite of software tools for detecting criminals using DNA databases has
achieved the overall objective by providing a working platform for sequence analysis. The work also demonstrated that by
integrating BLAST and FASTA (two widely used and freely available algorithms), plus an additional implementation of
PSA (custom-built pairwise sequence alignment algorithms) and TR analysis tools (for detecting tandem repeats) with the
rest of the utilities supporting tools (databases and files management) developed, it is entirely possible to have an initial
working version of the software tool for criminal DNA analysis and detection work. The integrated software tool has great
potential and that the results obtained during the tests were satisfactory. The recent South Asia Tsunami incident has re-
newed the need to establish a quick and reliable system for DNA matching and comparison. This work may also contrib-
ute towards the quick identification of victims in many disasters.

Future works are to further enhance the existing tools by adding more options and controls, improve upon the visualisa-
tion display, and to build robust software architecture to better manage the system loadings. Fault tolerance enhancement
to the system is one of the key areas that can further help to make the entire application efficient, robust and reliable.

1. INTRODUCTION

A murder has been committed. Apart from the victim,
there are no other witnesses, but some evidence has been
found at the crime scene. Blood and hairs were gathered by
the crime scene investigators, and it was believed that it
could be left by the suspect. From the evidence collected,
would they be sufficient to provide a clue as to how the mur-
der was committed and who was the murderer? Imagine a
deoxyribonucleic acid (DNA) profile (i.e. double helix DNA
typing [1-4] can be constructed from those physical evi-
dences found at the crime scene and used to match against a
DNA database of known suspects. By using a computer
DNA analysis tool to query a large human DNA database,
the result obtained from the analysis would be the evidence
that can be used to either convict or acquit a suspect.

DNA typing applications are not only computational in-
tensive and time consuming, the cost of implementation to
develop such a computer system is also very expensive and
technological demanding. However, until recently, the costs
of hardware and software have been reduced significantly,
making it possible now to design and build high performance
computerized systems to carry out DNA analysis on large
DNA databases to assist in the area of forensic science to
detect criminals. In addition to these issues relating to tech-
nologies, there are also issues related to the accuracy of the
DNA fingerprinting analysis. The two major concerns are
that (1) a DNA fingerprint belonging to a specific person
must have a high probability. In other words, the confidence

*Address correspondence to this author at the Adjunct NUH Scientist, Of-
fice of Biomedical Research, National University Hospital of Singapore,
Singapore; E-mail: mykng@ntu.edu.sg

1874-4311/08

level that a correct match is obtained must fall within an ac-
ceptable range, and (2) the DNA sample for analysis must
not be contaminated by any external sources, therefore it is
essential and important to ensure the integrity of the DNA
sample. The result of the DNA analysis will be detrimental if
the standard process is not being followed closely. Due to
the importance of such systems, even a slight error can have
a profound impact on the outcome.

The aim of this study is to develop an integrated software
tool, using the DNA typing concept and genetic sequence
analysis algorithms (i.e. sequences alignment technique) for
detecting criminals using DNA databases. The initial phase
of the study is to understand the requirements of building a
DNA database system that can assist forensic experts to
carry out an automated search and match operations on a
DNA database. Once a general understanding is achieved,
the next step is to design and build a software system that
will fulfil such needs. A number of important sequence
alignment algorithms will be reviewed in section 2 and cho-
sen for the implementation of this software system. The end
delivery of this study is a working DNA analysis tool, a cost
effective one, which serves as a proof of concept application
and will work on test data stored in the DNA databases.

The DNA analysis application will be built using
Netbeans Integrated Development Environment (IDE).
Netbeans IDE (current version is 3.6) is an open source
WYSIWYG Java development tool (current Java version is
1.4.2). The application is designed and developed to run on
Microsoft Windows XP. Since the application (which in-
cludes graphical display and sequence analysis algorithms
implementation) is written using Java programming lan-
guage (version 1.4.2), it can be run on any computer plat-
forms which has a Java Virtual Machine (JVM) installed.

2008 Bentham Science Publishers Ltd.

2 The Open Medical Informatics Journal, 2008, Volume 2

The database schema will conform to the FASTA format
(i.e. a format that is commonly used for sequence search)
and stored using facilities provided by formatdb and Biojava.

The system architecture of the application has a database
to contain all the criminal DNA data, a set of DNA sequence
analysis algorithms, and a Java GUI based DNA analysis
tool for results display and sequences manipulation facilities.
However, due to the confidentiality and sensitivity nature of
the data (i.e. involving human DNA), a high security clear-
ance from the relevant authorities is required in order to have
access to the real data, which makes it difficult to acquire
real data for the testing. Therefore, in this work test data, a
combination of self-generation data supplemented by data
obtained from the Internet Genome Databases will be used.
Nevertheless, it is sufficient for testing the software applica-
tion and for the purpose of concept demonstration.

Since the subject matter on DNA typing is wide, and with
only limited resources and time, the emphasis of this study is
therefore confined to the implementation of sequence align-
ment algorithms, such as pairwise sequence alignment
(PSA), short tandem repeats search algorithm, BLAST and
FASTA alignment algorithm, in the area of forensic science
applications.

2. LITERATURE REVIEW

This section provides an overview of the concept of DNA
Typing and its scientific basis. It also provides a detailed
study into various DNA sequence alignment algorithms that
are hitherto available.

2.1. The Scientific Basis of DNA Typing

Often, DNA fingerprinting deals with DNA sequences at
the molecular level. Therefore, it is important to understand
terminologies like locus, allele, polymorphism (and their
different types) and tandem repeats. These are discussed in
the following paragraphs.

The physical location (i.e. at the molecular level) in the
Position

1 2 3 4 5 6 7 8 9

A T G C G T G C A
| | | | I | | | |
T A C G cC A C G T
Fig. (1). An example of sequence polymorphisms.
Position
1 2 3 4 1 2
A T G (o] A T
I I I I I I
T A (o] G T A

Tandem Repeat
Fig. (2). An example of length polymorphisms.

Tandem Repeat

Kong and Ng

genome is called locus (singular — locus, plural — loci). The
presence of multiple alleles (i.e. alternative forms of a single
gene) of a marker at a single locus is known as polymor-
phism. There are two kinds of variation (1) sequence poly-
morphisms and (2) length polymorphisms. Sequence poly-
morphisms are usually simple replacement of one or two
bases in the genes themselves [5]. For example, Fig. (1) de-
picts the sequence polymorphism at the fifth base pair from
the left.

This is different in the case of length polymorphisms.
Length polymorphisms are known as the variations in the
length of the DNA molecule. For example, given three
blocks of repeats (with similar DNA sequences), each block
is known as a tandem repeat as shown in Fig. (2).

Therefore, a locus that exhibits variation in the number of
tandem repeats is known as a variable number tandem repeat
(VNTR).

Research has shown that only 5% of the human genome
contains useful genes. Genes are portions (sub-units) of
chromosome that contain useful information and serve as
templates for the production of proteins. However, the rest of
the 95% of the human genome does not contain genes that
code for any proteins. Sometimes this section of the human
genome is known to be “junk DNA”. Until recently, studies
have shown that these “junk DNA” do have important func-
tions such as regulating gene expression, assisting in cellular
machinery and serving as chromosomal structure support [3].

It is in these non-coding regions of the human genome
where the VNTRs are mostly located. The number of copies
of a VNTR determines the size of a DNA fragment, and each
individual has a unique number of tandem repeats at specific
molecular location (i.e. loci) on his or her chromosome. Es-
sentially, this important principle serves as a building block
of DNA evidence that is used today in many forensic works
to allow unambiguous identification of suspects.

2.2. The Scientific Basis of DNA Fingerprinting

After gaining understanding of the scientific basis of

Position

Tandem Repeat

Analysing of Large DNA Databases

DNA typing, we now turn to a few sequence alignment algo-
rithms that perform appropriate tasks. In many applications
of Bioinformatics, especially in the area of forensic studies,
we need to examine the possible optimal alignment between
two or more related sequences (i.e. be it DNA or protein
sequences, these sequences can be extracted from various
loci with tandem repeats or from any forensic evidences) and
the close relationship between them. For this reason, it is
important to include them in our studies and understand their
vital roles and functions in forensic applications.

2.3. Dot Plot

One of the simplest methods for evaluating whether two
sequences are similar is to use a dot plot approach [6]-[7].
First, a matrix is constructed, with sequence A on the x-axis
and sequence B on the y-axis. Begin with all the cells initial-
ised at zero. The computation starts by taking the first char-
acter of sequence A and comparing it with all the characters
of sequence B. Mark those characters of sequence A with an
‘%’ if the same character can be found in sequence B. Next,
the computation advances to the next character of sequence
A and the same steps are performed. Stop when all the char-
acters in sequence A have been compared with all the char-
acters of sequence B. At the end of the computation, a dot
plot is produced as illustrated in Fig. (3).

Sequence A
1 2 3 4 5 6 7
A|TIA|G|IC|C|A
1A X X X
SequenceB | 2 | A | x X X
3G X
4| C X | X
5|A | x X X

Fig. (3). Dot Plot.

One of the shortcomings of a dot plot is that it can be
complex and overcrowded with dots when the sequences
become too large and similar (i.e. similar does not mean
identical). Normally, identical sequences will give rise to a
single diagonal line across the plot as shown in Fig. (4).
Whereas in Fig. (5), similar sequences tend to produce a
broken diagonal line and the gaps in between them indicates
that there are mismatches between the two sequences. If the
two sequences are distantly related with very few similari-
ties, it will not only contain more diagonal lines in the direc-
tion parallel to central diagonal, but also broken diagonal
lines as in Fig. (6). The distance between the central diagonal
line and the surrounding sub-diagonal lines represents the
correction needed by introducing gaps to align the two se-
quences.

Since the dot plot is particularly sensitive to noise when
comparing two large sequences with similarities, one of the
workaround solutions is to introduce the concept of a sliding
window with a cutoff threshold. The sliding window is simi-
lar to a cart that contains a number of characters (i.e. defined

The Open Medical Informatics Journal, 2008, Volume 2 3

by the window size), which will be used and compared with
other characters in another cart. If the total number of
matches between these two carts is higher than or equal to
the predefined cutoff threshold, a match is found, otherwise
no match is found and the sliding window then advances to
the next set of characters and the process is repeated. The
sliding window with a cutoff threshold helps to reduce noise
in the dot plot.

Sequience A

Sequence B

Fig. (4). Comparison of two identical sequences.

/

/

/
/

Sequence A

Sequence B

Fig. (5). Comparison of two highly similar sequences.

Sequence A

Sequence B
Fig. (6). Comparison of two distantly related sequences.
2.4. What is a Pairwise Sequence Alignment?

An alignment between two sequences is defined as a
pairwise match between the characters of each sequence. So,
pairwise sequence alignment is a technique used to find the
optimal pairing of sequences (i.e. can be either DNA se-
quences {A, C, G, T} or Protein sequence {A, C,D, E, F, G,

4 The Open Medical Informatics Journal, 2008, Volume 2

H LK L MNP Q,R,S, T, V, W, Y}) that preserves the
order of characters in each sequence. Gaps may be intro-
duced in the alignment process so that the total score can be
maximized [6-9]. This concept can be generalised as follows
in Table 1.

Table 1. Pairwise Sequence Alignment Generalisation

Kong and Ng

2.4.3. Local Alignment With Linear Gap Penalty

If the aim is to find sub-sequences that are similar to any
part of a long sequence, both the global and semi-global
alignments are not suitable because both penalise every non-
matching position. Hence, the local alignment is proposed to

Score for character similarity (i.e. x =y)
Score for character dissimilarity (i.e. x #y)
Score for gap, g (i.e. inserting a ‘-* character)

Example:

Input Two sequences X,, and Y, where m and n are the length of sequences X and Y respectively.

A scoring function, s(x, y), wherex € X,,andy € Y,

s(x,y) =+1if x =y, gives a score of +1 if the two character are the same
s(x,y) =-1ifx #y, gives a score of -1 if the two character are not the same

g =-2, gives a score of -2 if a gap is introduced in the sequence

Task Traverse along the two sequences and attempt to find the optimal alignment between the sequences such that the total score is maxi-
mized. During the process, gaps may be introduced to assist sequence alignment.

Output

Sequence 1 (query) AGGGTTGCC
LR 1l

Sequence 2 (subject) AGGGTT-CC

Example on Protein sequence:

Sequence 1 (query) EEFLMNW
[T

Sequence 2 (subject) EE-LMNW

The alignment of the two sequences with the best score. Example on DNA sequence:

With the generalisation and understanding of pairwise
sequence alignment, we are now ready to tackle more sophis-
ticated algorithms. The algorithms described in the following
sections perform sequence alignment via dynamic program-
ming. Dynamic programming is a concept, which refers to
solving an instance of a problem by taking advantage of com-
puted solutions for smaller subparts of the problem. Three
alignment methods will be reviewed in the following sections,
namely global, semi-global and liner alignment algorithms. In
addition, two penalty schemes, the linear and affine gap penal-
ties, will be discussed for each alignment method.

2.4.1. Global Alignment With Linear Gap Penalty

Regardless of the location of the gaps in a sequence, global
alignment will give penalty to gaps identified during sequence
comparison. As such, the entire sequence will be considered as
a whole entity during the alignment process. The “Needleman
and Wunsch Algorithm” is one such global sequence align-
ment algorithm. The algorithm is described in Table 2.

2.4.2. Semi-Global Alignment With Linear Gap Penalty

If the aim is to use a shorter sequence to search for a
larger sequence for a possible sub-sequence match, semi-
global alignment will be a better choice as compared to the
global alignment as the latter will penalise gaps at either
ends of the alignment. Semi-global alignment solves this
problem by not penalising gaps found at either ends of a se-
quence. The semi-global alignment with linear gap penalty is
described in Table 3.

solve this problem and one such method is the “Smith-
Waterman Algorithm”, which is described in Table 4.

2.4.4. Global Alignment With Affine Gap Penalty

In many occasions, gap of length & is more probable than
k gaps of length 1. This is especially so for a single mutation
event that can insert or delete a stretch of characters in a se-
quence. In addition, distinct mutational events could also
lead to separated gaps being produced. A linear gap penalty
function treats all these events in the same fashion. However,
the affine case distinguishes these events and treats them
separately. The affine gap penalty function uses two penal-
ties, which are the gap opening penalty, referred to as 4, and
the gap extension penalty referred to as g. The only differ-
ence between a global alignment with linear gap penalty and
a global alignment with affine gap penalty is the penalty
function being used, and instead of only one similarity ma-
trix being computed (in linear gap penalty), three similarity
matrices are being computed (in the affine gap penalty). The
rest are similar. The global alignment with affine gap penalty
is tabulated in Table 5.

2.4.5. Semi-Global Alignment With Affine Gap Penalty

Table 6 summarised the semi-global alignment with af-
fine gap penalty.

Analysing of Large DNA Databases The Open Medical Informatics Journal, 2008, Volume 2 5

Table2. Global Alignment with Linear Gap Penalty Algorithm

Input: Given sequences of S; and S, with length n and m respectively. Let s be the scoring scheme and g be the linear gap penalty.
Objective: To find the best match between sequences of .S, and .S, from one end to another.
Step 1: Compute the similarity score of the optimal global alignment with linear gap penalty. First, construct a (m+1) X (n+1) matrix M and then
initialise the matrix M with the following conditions,
M(0,0)=0
M(3,0)=ixg
M@, j)=jxg

i and j are the row and column index of matrix M respectively and g is the gap penalty from the scoring scheme. Lastly, construct the rest
of the remaining cells according to the recurrence relation for global alignment with linear gap penalty:

M@ -1, j=D+s(S[i]. 517D

M (i, j) = max M@G-1,j)+g
MG, j-D+g
Step 2: In step 1, only the similarity score is computed. To find the alignment itself, we must find the path of choices that lead to this score. This

is known as the traceback stage. In each cell, it saves pointer(s) to parent cell(s) that gives the optimal score (where the optimal score
originated). M (i, j) contains the optimal score and the formula is as follows:

M(i,j):max{M(i—l,j—1)+s(S][i],S2[j]), M@i-1,j)+g, M(i,j—l)-l—g}. Initialise P to an empty set, P(i,j)=@.

From the matrix top to bottom, left to right, perform the following operations to locate the traceback path for each cell.

Case 1

IF (M, j)= M(i—1,j—1)+s(S,[i],S,[j]) then P(i, j)U ()
Case2

IF (M(i, j)==M(@—1,j)+g) then P(i,)= P(i, j)U M

Case3

IF (M(i,j) =M@G,j-1+ g) then P(i, j) = P(i, j) U (€)

Step 3: Start from the final cell P (m, l’l) and follow any path back to P(0,0) . It is possible to obtain multiple alignments if there are more

than one path leading to P(0,0).

Time complexity: O (m X n)

Space complexity: O (m X n)

Table 3. Semi-Global Alignment with Linear Gap Penalty

Input: Given a sequence S, of length m and a sequence S, of length 7 and a scoring scheme S .
Linear gap penalty function: w(k) = g X k , where w(k) indicates cost of a gap of length k and g isaconstant.
Objective: To find the best match between subsequence of S, and S, .
This semi-global alignment is particularly useful when lengths of sequences differ significantly and we want to align the shorter sequence
in the interior of the other or to align the suffix of one sequence to the prefix of the other.
Step 1: Compute the similarity score of the optimal semi-global alignment with linear gap penalty.
First, construct a (m+1) X (n+1) matrix M, and then initialise the matrix M with the following conditions,
M(0,0)=0
M(i,0)=0
M(@©,/)=0
i and j are the row and column index of matrix M respectively. Take note of the differences. The first row and first column of the matrix
M are initialised to zeros.
Lastly, construct the rest of the remaining cells according to the recurrence relation for global alignment with linear gap penalty:
M@i—1,j=D+s(S LS, 17D
M (i, j) = max M@G-1,j)+g
M@, j-D+g
Step 2: This step is similar to the global alignment (section 2.4.1).
Step 3: Start from the last row or the last column of matrix M with the maximum value.
Trace until the cell (0,0) is reached.
Time complexity: O (m X n)
Space complexity: O (m X n)

6 The Open Medical Informatics Journal, 2008, Volume 2 Kong and Ng

Table 4. Local Alignment with Linear Gap Penalty
Input: Given sequences of S; and S, with length n and m respectively. Let s be the scoring scheme and g be the linear gap penalty.
Objective: To find the best match between subsequence of S, and S, .
Step 1: The step 1 is similar to that of semi-global alignment except we are computing the similarity score of the optimal local alignment with
linear gap penalty.
Take note here that there is an additional of a zero in the modified recurrence relation.
Step 2: This step is similar to the global alignment (section 2.4.1).
Step 3: Find the maximum value of M [, j], which can be anywhere in the matrix. Traceback pointers from the maximum cell until a cell with
value 0 is reached.
Time complexity: O (m X n)
Space complexity: O (m X n)
TableS. Global Alignment with Affine Gap Penalty
Input: Given sequences of S; and S, with length n and m respectively. Let s be the scoring scheme, / be the gap opening penalty and g be the
gap extension penalty.
Step 1: Global alignment dynamic programming algorithm for the affine gap penalty case uses three matrices instead of one.
(R)M (i, j) = score of the best global alignment of S,[1..i] and S,[1..j] thatendsin S,[7] matched with S,[j].
(€) E(i, j) = score of the best global alignment of S,[1..i] and S,[1..j] thatends in a gap matched with S, [j].
("™ F(i, j) = score of the best global alignment of S,[1..7] and S,[1..j] thatends in S,[i] matched with a gap.
Construct these matrices, initialise the first row and first column of the three matrices with the following initial conditions,
M(0,0)=0; M(i,0)=—c; M(0, j)=—o0
E0,0)=—oc0; E(i,0)=—c; E,j)=h+jXxg
F(0,0)=—0; F(i,0)=h+ixg;, F(,j)=—o
Lastly, construct the rest of the remaining cells according to the recurrence relation for global alignment with affine gap penalty,
M@i-1j-1
M@, j)=s(S[i].S,[j)+max§ EG—1,j-1)
FGi-1j-1
h+g+M(@,j—1)
E(@,j)=max< g+E@G,j—1)
h+g+F(i,j—1)
h+g+MGI-1,j)
F(,j)=maxy h+g+E(i—1,j)
g+FGi-1))
Step 2: This is the traceback stage. Fill in the rest of the three matrices from the top to the bottom, and from the left to the right and then store the
corresponding pointers to the parent cells in each matrix.
Step 3: Start from the cell with the largest value of either M (m,n), E(m,n) or F(m,n). Trace back pointers until the cell M (0,0) is
reached.
Table 6. Semi-Global Alignment with affine gap penalty
Input: Given sequences of S; and S, with length n and m respectively. Let s be the scoring scheme, / be the gap opening penalty and g be the
gap extension penalty.
Step 1: The step 1 is similar to that of global alignment (section 2.4.4) except that the semi-global alignment dynamic programming algorithm
for the affine gap penalty with three matrices is used here. Also, one of the initial conditions is
F(0,0)=—eo; F(i,0)=—o; F(0, j)=—o0
Step 2: As step 2 of section 2.4.4.
Step 3: Start from the last row or last column of the matrix M with the largest value. Traceback pointers until the cell (0, 0) is reached.

Analysing of Large DNA Databases

The Open Medical Informatics Journal, 2008, Volume 2 7

Table 7. Local Alignment with Affine Gap Penalty

Input: Given sequences of S; and S, with length n and m respectively. Let s be the scoring scheme, / be the gap opening penalty and g be
the gap extension penalty.

Step 1: Step 1 is similar to the semi-global alignment (section 2.4.5) except that the local alignment dynamic programming algorithm for
the affine gap penalty case with three matrices is used here. Also, there is an additional of a zero in the modified recurrence relation
max(M(i,j)).

Step 2: As step 2 of section 2.4.5.

Step 3: Start from the cell with the highest value of matrix M. Trace back pointers until a cell with zero value of the matrix M is reached.

2.4.6. Local Alignment With Affine Gap Penalty

The local alignment with affine gap penalty is detailed in
Table 7.

2.4.7. Comparison of Global, Semi-Global and Local
Alignment

Krane ef al. [6] reviewed that global alignment is good
for comparing two sequences in their entirety, if this is the
intention. The gap penalty is scored regardless of where the
gaps are located; the gaps can be found in the middle of a
sequence, or at either end of a sequence. However, to locate
a sub-sequence within a longer sequence (but not the en-
tirety), semi-global alignment is more suitable. This is be-
cause semi-global alignment does not penalize gaps that are
located at either end of a sequence. Quite often, gaps that are
located at either end of a sequence have no biological sig-
nificance and therefore, it can be safely omitted without any
significant impact. But gaps that are located within a se-
quence will be penalized. There may be times where only a
very small sub-sequence matches a subsection of a larger
sequence, and there are many mismatching position, the
alignment score may be lowered significantly. Under such a
circumstance, it is better to use local alignment. Local
alignment ignores mismatches and gaps before and after the
matching region, but it reveals the matching region in the
centre of two sequences.

Although each PSA algorithm has its own strengths and
limitations, it is able to meet most of the sequence alignment
needs. In fact, PSA works with thousands, or even millions,
of DNA and protein sequences, which would otherwise be
impossible if done manually.

3. HEURISTIC ALIGNMENT ALGORITHMS

The above-mentioned PSA algorithms work efficiently
when aligning a smaller set of sequences. However, it is
more common to perform pairwise database search using a
query sequence through a database of many sequences to
retrieve those that are similar to that query sequence. This
can quickly translate into a higher demand in the usage of
computing resources, such as hardware memory, disk space
and CPU speed, which is not a trivial task. Therefore, two
important techniques were developed to handle these re-
quirements. They are BLAST [10] and FASTA [11] database
search techniques, which are simply extensions of the PSA
technique and are fast because they incorporate heuristic
features in the algorithm. In the following sections, we will
look at these well-known techniques in greater detail.

3.1. BLAST

BLAST (Basic Local Alignment Search Tool) algorithm
was originally developed in 1990 by Altschul ef al. and it is
one of the most commonly used tools for searching sequence
databases for maximal un-gapped local alignments. It is effi-
cient and optimised for parallel computation. BLAST adopts
a simple approach by taking the input sequence and breaking
it down into a fixed length of words (normally length of 4).
After which, these words will be used to search through the
sequence databases to obtain high-scoring pairs. The BLAST
search process can be summarised as follows:

Given an input sequence: ACCGTTTAAAA

Step 1: Break the query sequence into words of a fixed

length (default word length of 4).
ACCGTTTAAAA = ACCG, CCGT, CGTT, GTTT, .., AAAA

Step 2: Pre-process the words by discarding those that

contain common amino acids.

Step 3: Starting from “ACCG”, search the sequence data-

bases for word matches.
ACCG

|1
ATTTGCCACCGGGAAATATATATA ..

Step4: Then, extend the query sequence and repeat the
search until the local alignment score falls below a

certain threshold.
ACCGTTTA

LT
TTTTTACCGTTTATTTTCTATATATA ..

Step 5: Output the alignment results.

There has been much work done lately on improving
sequence alignment such as Clustal W is the most commonly
used multiple alignment software [12]. ClustalW can gener-
ate phylogenetic trees when a properly formatted alignment
is input.

3.2. FASTA

FASTA, originally developed in 1985 by Lipman et al.
[11], is used to perform gapped local alignments between
sequences. Similar to the BLAST technique, FASTA also
breaks a query sequence into words of a fixed length, known
as ktup no. For nucleotides, ktup no 4 to 6 is used, and for
proteins, ktup no 1 to 2 is used. Next, a look-up table and an
offset table are constructed for a query sequence and a target

8 The Open Medical Informatics Journal, 2008, Volume 2

sequence respectively. By comparing these two tables, simi-
lar subsequences are identified. The FASTA search process
can be summarised as follows:

Given a query sequence: ATGCTATAC

123456789
ATGCTATAC

For a ktup no = 4, a look-up table is constructed as fol-
lows:

Position:

Word Position
ATAC
ATGC
CTAT
GCTA
TATA

TGCT

N|O W] &[] o

Given a target sequence: TGCTAT

Position: 123456
TGCTAT
The following offset table is constructed using ktup no =
4.
Word TGCT GCTA CTAT
Position 1 2 3
Offset 1 1 1

Offset by 1 (a large no. of instances of the distance 1 in
the second table), we would obtain the following alignment.

ATGCTATAC

NEREN

TGCTAT (offset the target sequence by 1) >
3.3. Comparison Between BLAST and FASTA

The similarities and differences between the BLAST and
FASTA approaches can be summarised as follows [13].
BLAST and FASTA have the following common strategies:

. Both techniques have fast screening process to elimi-
nate unrelated sequences; and

. Both techniques are able to complete alignment of top
scoring sequences.

The differences between these two techniques can be
found in:

. Statistical model; and
. Heuristic and tuning.

4. TANDEM REPEATS SEARCH ALGORITHMS

In section 2, the definition of tandem repeats and its ap-
plication were introduced. A brief discussion for each of the
tandem repeats alignment algorithm is given here.

Tandem repeats (TRs) can be generally classified into
two categories. The first being the exact tandem repeats

Kong and Ng

(ETRs), which refer to repeats that exist in two or more du-
plications, and each repeat following the preceding one in a
continuous fashion. The second category is the approximate
tandem repeats (ATRs), which refer to repeats that evolve
through mutations (i.e. insertions, deletions or substitution),
and each repeat following the preceding one may differ
slightly in one or more alphabet. For example,
...AGCTAGCTAGCT... is an ETR with “AGCT” repeated
three times in a continuous manner and
...AGCTAGTTAGCTAGCCAGCA... is an ATR with
AGCT>AGTT->AGCT->AGCC... Take note of the varia-
tion in one of the alphabets. The remaining sections give an
overview of TR algorithms being used currently.

In a paper written by Benson [14], he grouped the current
TR algorithms into four general approaches. These are:

. Alignment matrix approach. This approach computes
and aligns alignment matrices and adjacent repeats
within a DNA sequence. However, the limitation of
this approach is excessive running time.

. Data compression approach, which takes advantage
of the fact that adjacent repeats can be compressed ef-
ficiently into respective regions and that these regions
contain tandem repeats.

. Heuristic approach. This is a direct approach,
whereby it incorporates heuristic techniques during
implementation. However, not all tandem repeats can
be identified through this approach.

. Direct approach. This approach, unlike the previous
three approaches, aims to search for tandem repeats
directly. A Tandem Repeat Finder [14] is an example
of such a method.

Due to the complexity and wide variation of each TR
algorithm, it is not possible to discuss every one. However,
to complete the discussion, two methods have been selected
for a walkthrough, so that the steps taken to search for tan-
dem repeats within a nucleotide sequence can be better un-
derstood.

5. ARCHITECTURE DESIGN AND COMPONENTS
IMPLEMENTATION

In this section, a detailed discussion is provided in the
area of architecture design and implementation.

5.1. System Architecture Overview

Fig. (7) depicts the high-level system architecture of the
system developed. The user interacts with the system via a
GUI (Graphical User Interface) display to perform sequence
alignment operations. The sequence alignment algorithms
included in this work are PSA, BLAST, FASTA and Dot-
plot. In addition, TR is used for tandem repeats analysis.
PSA, TR and Dotplot are custom-built applications using the
Java SDK, whereas BLAST and FASTA are both open-
source applications freely available for development use and
have been integrated to the system. The rest are utilities de-
veloped to support Sequence Analysis Work. Examples are a
set of database utilities for index (key) creation, data conver-
sion, and packaging of data into the Fasta data format (i.e.

Analysing of Large DNA Databases

Table8. Tandem Repeats Search Algorithms

The Open Medical Informatics Journal, 2008, Volume 2 9

Method Characteristic

Key Steps

—_

Tandem Repeat Search via data
compression approach [Rival
1997]

. Works well for short tandem pat-
terns (less than four).

. Assume tandem repeat zone must
begin and end with exact tandem
pattern.

—_

. First, locate all the PTRs within a sequence. Then, the algorithm will at-

tempt to compress each adjacent PTR. If there is a compression gain, then it
is an ATR region. This process is repeated for each adjacent ATR.

. From the ATR region, derive a new compressed sequence from the original

one. A function is used to evaluate the likelihood of each ATR region as a
tandem repeat based on the compression gain criteria.

—_

. This method is considered to be
more general as compared to other
TR methods.

. Based on Bernoulli trials concept.

Tandem Repeat Finder [Ben-
son 1999]

. Uses a sliding window of size &
and transverses along the nucleo-
tide sequence.

—_

. First a small window of size k is constructed. Then, create an exhaustive list

of k-length strings. There should be 4* of such strings, which are known as
probes.

. For each k-length probe p, slide along the nucleotide sequence using the k-

size window. Insert position 7 into the list H, if there is a match for probe p
at position i.

. From the list H,, scan H, for all j < i. The distance d = i —j is a possible

tandem repeat.

. Keep a distance list D,;. Update it every time a match at distance d is de-

tected.

. During the analysis phase, use dynamic programming to align a potential

tandem pattern of size d with its surrounding sequence. If two or more cop-
ies are aligned, then the pattern is reported as a tandem repeat.

BlastFastaData) for database search, which are particularly
used by BLAST and FASTA algorithms. Also, BioJava utili-
ties for creating and maintaining data (i.e. BioData) that is
compatible to BioJava standard, are used by the PSA algo-
rithm. BioJava also provides many other sequence routines,
algorithms and libraries for building bio-applications. In ad-
dition, a text file editor is also developed to facilitate se-
quence files editing.

PSA, BLAST and FASTA algorithms are capable of util-
ising multiple CPUs for parallel execution. PSA achieves
this via the Java Threading function. Java Threads are light-
weight processes spawned by PSA to perform database
search and sequence alignment. Open-source such as
BLAST and FASTA were developed to handle multiple
CPUs as well.

GUI Interface (Visualisation)

BLAST Algorithm
FormatDB

FASTA Algorithm

TR Algorithm

Dotplot Algorithm

Fig. (7). System Architecture.

BlastFastaData

Database Tools File Editing Tools

BioData

Sequence Files

10 The Open Medical Informatics Journal, 2008, Volume 2

5.2. Components Implementation

The GUIMain is the root use