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One of the central problems in the cell is how to transport molecules around the
cell to desired locations. Since low Reynolds number conditions apply and
diffusional times are large, without the aid of molecular motors to transport the
fluid quickly cells could not survive, yet diffusion is still essential for the ultimate
delivery of the goods. This paradox of low Reynolds number/large Peclet number
has been solved by the algal weed Chara corallina in ingenious ways, as the
recent paper by Goldstein, et al. †Proc. Natl. Acad. Sci. 105, 3663–3667 „2008…‡
discusses at a deep but accessible way using modern hydrodynamic modeling.
[DOI: 10.2976/1.2978984]
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I have a couple of memories from graduate
school at the University of Illinois that have
some relevance to this paper by Goldstein et al.
(2008) I knew some smart fellow grad students
at the University of Illinois, smarter than me by
a long shot, one of them was Larry Nodulman.
One day, as we were leaving Loomis Labs,
Larry looked at a typically Urbana summer sky
with scattered puffy clouds and wondered: why
are the clouds so distinct and sharp against the
atmosphere; why isn’t the water vapor just all
blurred out into a haze? The other memory
comes from when I first entered biological
physics as a grad student, retreating from de-
pression about the direction experimental high
energy physics was going. I took a biochemis-
try course, and in the classic biochemistry text-
book by Lehninger (Lehninger et al., 2004)
there is a cross-sectional scanning electron mi-
croscope (SEM) image of a cell with some-
thing like 20 nm resolution: it is unbelievably
chock full of objects! I was stunned: how could
something so small �20 µm� be so complex,
and how did all the parts communicate with
each other? The recent paper by Goldstein
(Goldstein et al., 2008) gives an intriguing an-
swer to some of the physics of this process.

My fairly recent work in nanotechnology
and nanofluidics has helped me answer Larry’s
question: the sharp edges of clouds are largely

due to Newton’s Law of motion, F� =m�dv� /dt�.

It looks so simple, but it is not, because dv� /dt
is a total derivative of the vector v� and that
means the spatial as well as time dependence of
the vector plays a major role in the evaluation
of the derivative as one follows the velocity
vector as it snakes around space. The full ve-
locity derivative when written out has a term
nonlinear in velocity of the form v2 /R; where
R is the radius of curvature (you know this as
the centripetal acceleration) and this nonlinear-
ity gives rise to turbulence and puffy clouds
and all sorts of horrible mathematical difficul-
ties. However, in Lehninger’s cell things are
different: the nonlinear term in Newton’s ac-
celeration is small compared to linear viscous
damping terms, and we say that we are in a
regime of low Reynolds number flow. As
Goldstein et al. point out, this means that the
terrible nonlinear Navier–Stokes equation,
which is Newton’s acceleration plus the drag
due to viscous flow, becomes what now looks
like a relatively harmless equation for the mo-
tion of a fluid volume element which is linear
in velocity

�v�

�t
+ �P − ��2v� � 0, �1�

which is again an equation linear in v�. The new
constant (it is not always constant) we have in-
cluded here, the viscosity �, connects the
shearing of the fluid by an object moving
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through it with the transverse transfer of momentum that
must happen in shear. Shear is a critical concept in hydro-
dynamics because it provides the dissipative forces which
dampen the momentum of a particle by sucking kinetic en-
ergy out of the motion. At the simplest level of a planar flow
v�x of a liquid parallel to the �x ,y� surface, the shear vector

S� in the ẑ perpendicular to the surface is computed by taking

the spatial derivative S� =�vx /�zẑ. Shear causes the drag on
an object when it moves through a fluid. If the shear drag
is sufficiently great, then Eq. (1) describes the motion of
the fluid volume elements and we say that the fluid is a low
Reynolds number flow if Re�1, where the Reynolds number
Re is a dimensionless number given by

Re �
�v̄L̄

�
, �2�

where � is the (constant) density of the fluid, v̄ is the average

flow speed, and L̄ is the average distance over which the ve-
locity v� changes its direction. I am trying to be careful here
because in reality the Reynolds number Re in a complex flow
is not a constant but is a function of space (Batchelor, 2000).
In any event, if you put some numbers in Eq. (2) for typical
speeds of fluid flow in cells of about 10 µm/s and typical
dimensions of the cell of 10 µm and assume the medium is
water (actually the internal fluid in a cell is much more vis-
cous than water) you find that Re�10−4 and so Eq. (1) is an
excellent approximation. The implications of low Re flow
in biology has been famously described by the physics Nobel
Laureate Edward Purcell in “Life at Low Reynolds Number”
(Purcell, 1977), a title we stole in a paper with Ray Goldstein
in a paper called “Biotechnology at Low Reynold’s Number”
(Brody et al., 1996), and which Goldstein et al. refer to in
the paper under discussion here. The process of transporting
matter using deterministic flows such as the laminar flow of
Eq. (1) is known as advection.

So far, so good for mathematics since nonlinear equa-
tions are notoriously difficult to solve (a point lost on
Al Gore), but bad for the cell. Why? It is bad because a
low Reynolds number flow cannot mix contents because
there is no vorticity. Back to Larry’s clouds! Clouds form
in the atmosphere because the full-on version of m�dv�� /dt
allows for the fluid to circulate around in a circle, creating
the famous atmospheric water cycle shown in Fig. 1. But,
no such circulation, called vorticity, is possible in Eq. (1)
because it is an equation with a potential function solution.
Mother Nature is aware of this problem and motorized
the fluid: the cytoplasma of eucaryotes is full of motors
which pump the fluid around the cell, creating a net circu-
lation within the cell, as schematically shown by Fig. 2.
This active pumping of the cytoplasma solves a number of
physics problems: advection of cell contents is now driven
by metabolically powered motors rather then a pressure gra-
dient in Eq. (1) (it is very hard to create pressure gradients

in a closed volume!), contents can circulate around the
cell rather than just in and out, and the motion can be con-
trolled and directed. But we would warn the reader that
symmetry plays a role in these equations through the spatial
derivatives, and that the simplified equations is still a vec-
tor differential equation and not easily solved without play-
ing very close attention to boundary values of the flow, as
Goldstein et al. are careful to point out.

Figure 1. The circulation of water in the atmosphere. Transport
of the water vapor is driven by the Navier–Stokes equation.

Figure 2. The motorized transport of contents in the cell
„Lodish et al., 2000…. Myosin molecular motors run along actin
filaments and drag the fluid of the cell using the viscous drag term
in the Navier–Stokes equation �upper�, while molecules diffuse from
the laminar streams according to Einstein’s relation �lower�.
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However, even if Mother Nature is a master at working
with these differential equations for low Re motorized fluids
she still is left with a physics problem. Even with a motorized
fluid, the flow is still low Re, and thus laminar and deter-
ministic. How can you get small objects out of the laminar
flow lines to other places? For that we need Albert Einstein
and his most cited paper (Einstein, 1906), on Brownian
motion as a transport of particulates due to thermal motion
and the hydrodynamic drag exerted on particles. Thermal
diffusion can spread molecules and objects around a
cell. The actual subject of Brownian motion is quite com-
plex, but the simple relationship that everybody knows
equates the second moment �x2� of a particle’s position x ver-
sus time

�x2� = 2Dt , �3�

where the diffusion coefficient D is connected to the viscous
drag coefficient � an object feels as it moves at low Re speed
v through a liquid and the thermal energy kBT. The trick
is to combine the (deterministic) transport of particles that
Eq. (1) represents with the diffusional blurring represented
by Eq. (3). This is again a very difficult problem to solve, but
there is a famous dimensionless number called the Peclet
number Pe that characterizes the ratio of the time needed for
an object to diffuse a root-mean-square distance Z to the time
for the fluid transporting the particle to advect the same dis-
tance Z if the mean flow speed is v̄,

Pe =
tdiffuse

tadvect
� �Z2

D � Z

v̄
� =

v̄Z

D
. �4�

If the Peclet number is very large, advection is much more
rapid then diffusion and little diffusional spreading occurs.
However, since diffusion like erosion is a slow (but steady)
process with a mean distance of blurring which only in-
creases as the square root of time at high Pe number diffusion
is not a particularly efficient way to spread goodies around
inside the cell.

The solution that the algal weed Chara corallina has
evolved is exceptionally ingenious, and Goldstein et al. give
a beautiful mathematical analysis of the solution to the high
Pe problem. There are two parts to the solution that I hope
are now appreciated by the reader: (1) The motorized fluid
inside the cell is set up to create a cycle of vorticity to move
contents around, like the water cycle of the atmosphere. The
“indifferent zone” within the cell is actually the dividing line
between counter-flowing currents, and hence, a region of
high shear. (2) Because the Pe is high, on the order of 100–
1,000 or greater, advection moves things too rapidly for ef-
fective dispersal. To get around this, the diffusional distances
are minimized by layering the laminar flows in the circula-
tion in a helical manner, like the stripes of a barber pole,
or perhaps better put, by moving the fluid along an inclined
plane wrapped around an axis, so that adjacent laminar

flow lines are near each other, separated by the pitch of the
helix (see Fig. 3). In this way, the effective Pe is reduced by
the ratio of the pitched to the length of the helix, and much
more effective diffusional mixing of the contents can occur.
Figure 3 shows the interweaving of the helical flow lines,
taken from (Goldstein et al., 2008).

To actually do the calculations of the change in the mix-
ing due to the helical twists around an axis requires some
sophisticated transforming of the flow patterns in the radial
expansions in terms of Bessel function components, rather
like the way one solves periodic wave equations in terms of
the Fourier components. This Bessel function analysis breaks
down the solutions in terms of characteristic wavelengths �
of the flow, which can then be analyzed in terms of their dif-
fusional broadening as they are advected around the helix
axis by the motorized liquid. To quote the authors: “Our
model calculations show that this wavelength/radius ratio is
also a maximum in the nutrient uptake rate from the environ-
ment. It is then a plausible conjecture that nature has chosen
helical flows to enhance the uptake rate, particularly at this
significant developmental stage.” We hope the significance
of that statement is now clear!

We started talking about clouds and Newton’s (nonlin-
ear!) equations of motion at high Reynolds number, dis-
cussed how the length scale of fluid motion in cells restricts
one to low Reynolds number flow and mentioned the master-

Figure 3. Taken from „Goldstein et al., 2008…, Fig. 2. Idealized
spiraling flow in Chara. �a� Flow at the boundary, divided in an as-
cending band �red� and descending band �blue� separated by two
indifferent zones. Vectors indicate the direction of flow along the
bands. The shaded region corresponds to the horizontal section
shown by its intersection with the boundary as a horizontal solid line
in b and viewed along the cell axis in c and d. �b� Cylinder from �a�,
cut open along dotted line �as indicated by scissors� and flattened
out. Ascending and descending regions now appear as diagonal
bands. The two indifferent zones have a subtle difference in sym-
metry, which is reflected in the horizontal components of motion
converging at one zone and diverging for the other, as indicated by
the arrows at bottom.
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ful article by Purcell called “Life at Low Reynolds Number.”
The author of this appreciation originally worked with Gold-
stein and coauthored an article which used many of the tech-
niques exploited by Goldstein et al. in the present article, and
we called that earlier article “Biotechnology at Low Rey-
nolds Number.” Now Goldstein and his collaborators have
taken that title and analysis a step further, and in their words:
“the present analysis serves to highlight the unusual features
of life at high Peclet numbers, in which advection dominates
diffusion.” I hope that this appreciation makes the full con-
text of that last statement clear. For me, the wonder of that
old SEM picture of a cell in Lehninger is all the more en-
hanced by this excellent paper.
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