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Pulsing cells: how fast is too fast?
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Signal transduction pathways are complex coupled sets of biochemical reactions
evolved to transmit and process information about the state of the immediate cell
environment. Can we design experiments that would inform us about the
properties and limitations of signal processing? Recent studies suggest that this
indeed can be achieved by exciting a cell with carefully designed oscillatory
stimuli. Although this analysis has its caveats, complex temporal stimulation of
signal transduction networks can serve to rapidly advance our understanding of
these information channels and ultimately create intelligent ways of controlling

them. [DOI: 10.2976/1.2969901]

The complexity of biological signaling net-
works is reflected in the scores of genes and
proteins that can interact with each other in the
form of linear and branched cascades or feed-
back and feedforward loops, giving rise to ro-
bustly regulated responses to the myriad envi-
ronmental stimuli and stresses. Understanding
the dynamical aspects of this complexity has
been aided by the use of mathematical model-
ing (Asthagiri and Lauffenburger, 2000;
Kholodenko, 2006) and quantitative high-
throughput experimental techniques, the hall-
mark of modern day systems biology. In par-
ticular, relatively recently, devices allowing
precise dynamic handling of the cell media, in-
cluding those operating on the microscale
(Whitesides et al., 2001; Melin and Quake,
2007), have dramatically expanded the range
of stimuli used to interrogate cell behavior.

On the conceptual level, the functional
purpose of a signal transduction network in-
side a cell—transforming a range of inputs
from the external environment into the desired
output—is remarkably similar to the func-
tions of a circuit board in an electrical device
[Figs. 1(A) and (B)] (Lok, 2002; Hasty et al.,
2002). Although the components of living cells
and electronic devices and their modes of op-
eration are clearly vastly different, the apparent
similarity of the functional needs suggests that
similar tools of analysis might be employed
and perhaps used to reveal common control
and regulation principles. Fortunately, many of
the tools developed by electrical engineers
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were prompted by the increased complexity of
the systems they designed, systems complex to
such an extent that sometimes they had unpre-
dictable functionality—precisely the situation
we might be dealing with in cell biology. It is
therefore tempting to think that one can use an
analog of various electronic testgears, and
more importantly, the pertinent analytical tech-
niques to better understand the wiring of living
cells. Some examples of such approaches have
already emerged, e.g., in the analysis of chemo-
taxing cells (Levchenko and Iglesias, 2002; Yi
et al., 2000).

Two recent studies have explicitly set out to
use precise and complex cell stimulation and
dynamical systems theory to unravel the com-
plexity of the high osmolarity glycerol (HOG)
pathway in budding yeast, thereby furthering
our understanding of its regulation (Hersen
et al., 2008; Mettetal et al., 2008). In their pa-
per, Hersen et al. demonstrate the value of a
technique used in circuit theory for character-
izing a linear system: measuring the output re-
sponse to a train of sinusoidal or nonsinusoidal
pulses oscillating at different frequencies.
Drawing inspiration from the concept of band-
width in communication systems, they charac-
terized the dynamical properties of the HOG
pathway by calculating its “bandwidth” (see
below for details) and showed that this pathway
can act as a low-pass filter (LPF). Additionally,
they were able to place bounds on the kinetic
rate constants of the pathway. The concurrent
and conceptually similar study by Mettetal et
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Figure 1. The HOG pathway for osmoadaptation behaves like a low-pass filter (LPF) in response to an oscillatory square wave
input, in a manner analogous to an electronic LPF consisting of a resistor R and a capacitor C, as shown in (A). The transfer function
(H(s)) and filter bandwidth (w) relations of the RC circuit are shown below the circuit. (B) At low input frequencies of the square wave
w<1/RC (top left panel), the circuit acts like a unity gain system (as seen from the amplitudes of the input and output waves), and the output
(top right) closely follows the input, except for the time delay involved in charging and discharging the capacitor. When w>1/RC (bottom left),
the LPF acts like an integrator, which has a transfer function of (1/s). This can be seen from the overall envelope of the response (bottom
right), which resembles the charging cycle of an RC circuit following a step input. An LPF attenuates high frequencies, as seen from the
decreased amplitude of the individual charge and discharge cycles of the capacitor (bottom right), a consequence of the fast changing input
pulse train, which does not allow complete charging and discharging of the capacitor. (C) The HOG pathway response to a step input of high
osmolarity involves activation of the Hog1 MAPK, which then translocates inside the nucleus, as shown by Hog1-yellow fluorescent protein
(Hog1-YFP) protein localization in the middle panel. Following a return to iso-osmolar environment (low cycle of square wave), the pathway
deactivates resulting in translocation of Hog1-YFP out of the nucleus. The nucleus is identified by a nuclear marker Nrd1-red fluorescent
protein. The average translocation response of the population (red circles in the bottom panel) are defined as the ratio of average nuclear YFP
fluorescence to the average whole-cell YFP fluorescence. Figure 1(C) is reprinted from Mettetal et al. (2008), Science, 319(5862), 482—484,
with permission from the American Association for the Advancement of Science.

al. also characterized the frequency response of the same
pathway, using it to develop a simplified yet predictive model
of the osmoadaptation response and highlighting the impor-
tance of fast acting feedbacks, not involving gene expres-
sion, in regulating this response. Their study highlighted the
fact that osmoadaptation is dominated by a fast acting Hog1-
dependent negative feedback that does not depend on protein
synthesis and to a lesser extent by a Hog1-independent nega-
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tive feedback that controls the transmembrane protein Fpsl1.
Negative feedback through Hogl mediated gene expression
was needed only over longer time scales and more intense
osmolar shocks.

Measuring the frequency response of a linear system can
be relatively simple and informative. (Linear systems have
the simple property that changes in output are proportional to
changes in input, and the output to a combination of inputs is
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the same as the combined sum of outputs to the individual
inputs.) First, in response to a sinusoidal input, a linear sys-
tem output is a scaled and possibly phase-shifted sinusoid of
the same frequency. Measuring the output amplitude and
phase shift over a range of driving frequencies allows for the
complete characterization of the input—output response in
the frequency domain, i.e., the so-called transfer function.
Since any periodic time-domain signal can be decomposed
into a Fourier series, i.e., a sum of sinusoids; once the fre-
quency response is known, the response of the linear system
to virtually any input can be predicted (Oppenheim et al.,
2002). Although most networks in cell signaling are nonlin-
ear and can even sometimes have two or more distinct re-
sponses to the same input, a linear model is a good approxi-
mation when the perturbed network is not far away from a
resting state (Khalil, 2002). Second, the potentially complex
differential equations and convolution operations required
for modeling the system in the time domain become much
simpler algebraic operations in the frequency domain, a
scarce mathematical convenience that is hard to dismiss in a
sea of biological complexity.

Careful selection of input stimuli can lead to a better un-
derstanding of the dynamical properties of a signaling path-
way, by highlighting the possible dominant regulatory
mechanisms. For example, if a system is given a step input
and shows robust perfect adaptation to it, it can be shown
to have an integral feedback connection in the pathway (Yi
et al., 2000). Alternately, near perfect adaptation may be the
result of a feedforward loop or a negative feedback loop
(Levchenko and Iglesias, 2002; Behar et al., 2007). Indeed,
most biological experiments are restricted to step inputs of
different heights or short pulses of variable height and width.
These have proved to be informative stimulus conditions,
both from the point of view of simplicity of analysis (e.g.,
a step input only has a single parameter of dependence, the
level of the input) as well as the ease of experimental imple-
mentation. However, theoretical analysis shows considerable
advantages of oscillatory inputs for analyzing linear stochas-
tic gene regulation and signaling networks (Lipan and Wong,
2005). In particular, such measurements can improve signal-
to-noise ratios by observing the response over multiple input
cycles of the oscillatory input and allow variations of several
different input parameters, including the amplitude, the time
period, and the slopes of the increasing or decreasing edges
of the pulse.

Osmoregulation, which involves active mechanisms al-
lowing a cell to monitor and regulate the osmotic pressure,
and consequently the cell shape and relative water content,
is a type of homeostatic mechanism that is critical to con-
tinual cellular well-being. It is especially important for yeast
cells, which live in widely varying osmotic environments,
and being nonmotile need to develop an appropriate re-
sponse to the vagaries of the environment. In the HOG path-
way, S. cerevisiase monitor osmotic changes through the
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plasma membrane-localized sensor histidine kinase Slnl,
which under normal ambient conditions is active and inhibits
mitogen activated protein kinase (MAPK) signaling by phos-
phorylating the kinase Sskl. Following loss of turgor pres-
sure, the SInl phosphorelay system is inactivated, leading to
dephosphorylation of Sskl, which activates mitogen acti-
vated protein kinase kinase kinases (MAPKKKSs) Ssk2 and
Ssk22, which in turn phosphorylate the MAPKK Pbs2. The
pathway is also activated through another route, the Shol
branch, which includes many proteins common to the
pseudohyphal and pheromone pathway, and activates Pbs2
through the MAPKKK Stell. Active Pbs2 then phosphory-
lates Hogl, which translocates to the nucleus and triggers a
transcriptional response. This includes genes that increase
the production of glycerol, thereby increasing the internal os-
molarity of the cell. In addition to gene transcription medi-
ated production of glycerol, several Hogl-dependent and in-
dependent mechanisms are involved in osmoadaptation,
including the crucial regulation of the aquaglyceroporin
Fpsl. Following osmoadaptation and an increased turgor
pressure or following the return to an iso-osmolar environ-
ment, the pathway activation is turned off, and phosphatases
further inactivate the pathway, leading to Hogl MAPK trans-
location out of the nucleus (Klipp et al., 2005). The HOG
pathway has been extensively studied and has been reviewed
elsewhere (Hohmann, 2002; Hohmann et al., 2007; Saito and
Tatebayashi, 2004).

Hersen et al. stimulated individual yeast cells using an
oscillatory square-wave excitation pattern by alternately ex-
posing the cells to a hyperosmolar sorbitol solution or an iso-
osmolar solution for defined periods of time [similar to Fig.
1(C)]. The investigators then tracked the translocation of
Hogl-green fluorescent protein into and out of the nucleus in
individual cells. They found that for a slowly varying pulse
train, i.e., a square wave of low frequency, the Hogl nuclear
localization follows the input closely. However, as the input
oscillation frequency increases beyond a certain range, the
output oscillations die out and are replaced by the typical
HOG pathway response to a step input, i.e., a transient in-
crease in Hogl nuclear translocation followed by a return to
basal nuclear levels. It is as if the pathway is “blind” to the
oscillations if they happen fast enough. Strikingly, the re-
sponse levels for the high frequencies match the response to
a step input of half the amplitude of the input square wave,
thus suggesting that the pathway is averaging the input
square wave, or in other words, integrating it. When the am-
plitudes of the oscillations of Hog1 nuclear translocation are
plotted against the frequency of the input wave, the response
resembles that of a LPF [Figs. 1(A) and (B)], thereby allow-
ing the investigators to calculate the bandwidth of the signal-
ing pathway.

The bandwidth of a signal transduction pathway can be
an obscure term. One way to understand it is in relation to its
definition for a communication network, where it corre-
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sponds to the information carrying capacity of the network.
Thus, the larger the bandwidth of a signaling pathway, the
shorter its response time to a rapidly varying signal, and the
more information it can carry about the input signal. Hersen
et al. measured the bandwidth for a number of readouts
in addition to Hogl activity, including a mechanical readout
in the form of the cell size as well as gene expression read-
outs. All these readouts demonstrated an LPF response,
though interestingly, the mechanical response in the form of
cell size was shown to be nearly an order of magnitude faster
than the signaling response. The researchers used their band-
width measurements on different mutant strains to place
bounds on the activation and deactivation rates of the Sinl
and Shol branches of the pathway. They found that the SIn1
branch dominated the activation dynamics of the HOG path-
way and allowed cells to integrate fast fluctuating inputs
from the environment. This observation is interesting when
contrasted with the fact that while yeast has two branches
that feed into the osmoadaptation pathway, it is the faster
SInl branch, and not the Shol branch, that is conserved in
fungi, indicating the importance of a fast response to osmo-
lar changes in the environment (Furukawa et al., 2005;
Krantz et al., 2006). Their results also suggest that the HOG
pathway bandwidth is likely to be limited by the deactivation
rates of components at or downstream of Pbs2, thereby high-
lighting the role of pathway phosphatases as an avenue for
future investigation.

Though the use of oscillatory stimuli promises valuable
insights (Lipan and Wong, 2005), the difficulty in imple-
menting a generalized experimental technique has thus far
curbed its widespread use in biology laboratories. The key
to the success of Hersen ef al. has been the leverage of mi-
crofluidics as a means for reliably generating an oscillatory
external environment. Microfluidics refers to an integrated
system of miniaturized components handling small fluidic
volumes on the nanoliter scale and below (Whitesides et al.,
2001). One of the prominent applications of microfluidics in
the field of biology has been the generation of spatially
graded stimuli for the study of gradient sensing (Keenan and
Folch, 2008; Paliwal et al., 2007). The capability of microf-
luidics to accurately control the temporal dimension of the
extracellular environments has been less explored. Hersen
et al. utilized one of the classic simple designs in micro-
fluidics, a Y-junction, to generate square-wave inputs with
different frequencies. One of the caveats of this design is that
it is most applicable for cell types that adhere to the glass
substrate and are relatively insensitive to shear stress from
direct fluid flow over them. However, other published designs
have already addressed these issues (Groisman et al., 2005;
Wang et al., 2008; Paliwal et al., 2007; Irimia et al., 2007,
Sabounchi et al., 2006) and can be easily incorporated with
the flow scheme deployed in this work for a wider applica-
tion [Figs. 2(A) and (B)].
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Figure 2. Microfluidics-based approaches for exposing various
cell types to novel stimulation profiles for the reverse engineer-
ing of cell signaling networks. (A) Shear sensitive cell types
can be exposed to ligand gradients by employing techniques that
reduce or prevent flow induced shear stress. Wang et al. (2008)
present a design where neuronal cells are plated on wells etched on
a glass cover-slip (bottom layer of the multilayer microfluidic device).
Graded (spatially varying) or oscillatory (temporally varying) stimuli
are presented to the cells through media flowing in the fluidic layer
(middle layer), and media flow is regulated by a control layer of
valves (top layer of the multilayer device). Cells are not directly ex-
posed to the media flow but through diffusion of the media down
the wells. (B) A biochemical pulse generator integrated with a cell
trapping mechanism as designed by Sabounchi et al. (2006). Cells,
including those that do not adhere to a substrate, can be captured
using a negative pressure generated in the side channels while
pulsing through a solenoid valve sends requisite stimulation pulses
in the top layer. (C) An iterative process consisting of a careful
design of microfluidics-based experimental platforms, quantitative
experimentation, and analysis of cellular response in the time or
frequency domain, as well as mathematical modeling of signaling
pathways can lead to a deeper understanding of the structure and
regulatory mechanisms of signal transduction pathways. (A) from
Wang et al. (2008), Lab Chip 8(2), 227-237 and the photograph of
the microfluidic dynamic signal generator in (C) from Azizi and Mas-
trangelo, 2008, Lab Chip 8(6), 907-912, are reproduced by permis-
sion of The Royal Society of Chemistry. (B) from Sabounchi et al.
(2006), Appl. Phys. Lett. 88(18), 183901, is reprinted with permis-
sion from American Institute of Physics, copyright 2008.
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The work by Hersen et al. may provide a model for simi-
lar studies in other signal transduction pathways, but there
are some important concerns that might limit the generality
of the oscillatory input based method. As mentioned above,
the concept of frequency domain analysis using a transfer
function applies to linear time-invariant systems. However,
most biological systems are highly nonlinear. Furthermore,
the assumption that the input perturbations are small enough,
which allows the nonlinear system to be represented in a lin-
earized form, may not be valid, depending on the pathway
being studied or the applied stimulus amplitudes. In addition,
the frequency domain transfer function approach can be dif-
ficult to apply for multiple-input—multiple-output systems.
Biological systems are often multiple-input, possibly with
multiple output variables too, making them difficult to inter-
pret as pathways with a particular bandwidth, etc. The scal-
able and high-throughput nature of microfluidics could come
to the rescue in addressing this problem (Meyvantsson and
Beebe, 2008). Presence of multiple experimental regions,
each devoted to a single input and output, is easy to achieve
on the same microfluidic chip, thereby allowing the calcula-
tion of transfer functions between each input—output pair.
Another potentially limiting factor of the analysis is implicit
reliance on fast perfect adaptation of the Hogl response, al-
lowing rapid restimulation of the pathway. However, perfect
adaptation might be a rather special property limited to very
few biochemical systems, thus leading to non-standard oscil-
latory or even non-oscillatory responses. The technique
would also be inapplicable to systems that can show progres-
sively declining oscillatory output, i.e., due to gradual down-
regulation of pathway components. The analysis would also
have to be interpreted differently if used on systems that are
inherently oscillatory with an internal frequency, e.g., even
in response to a step stimulus. The analysis would have to
rely on taking into account potential resonance frequencies,
etc. Thus, it remains to be seen whether the application of the
analysis tools described by Hersen ef al. would extend to
many other signaling systems or remain confined to rather
special, though important cases.

In spite of the above caveats, the studies by Hersen et al.
and Mettetal et al. clearly illustrate the power of seeking
“simplicity in complexity,” i.e., developing simplified math-
ematical models or conclusions for signaling networks,
based on their input—output characteristics and thus develop-
ing intuition about their structure [Fig. 2(C)]. This can be
contrasted with the equally popular and successfully detailed
mathematical modeling approach, where most biochemical
reactions in the network are modeled using previously ex-
perimentally derived or fitted values for the large numbers of
kinetic rate constants and concentrations (Schoeberl ef al.,
2002; Chen et al., 2004; Shao et al., 2006). Detailed models
have also been successfully used for modeling the yeast
HOG pathway (Klipp et al., 2005), and a combination of
both approaches promises a better understanding of this
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signaling network. Importantly, these studies provide an
approach that can be tailored toward finding bounds on the
kinetic rate constants and unraveling the regulatory mecha-
nisms of signaling pathways in general.
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During the editorial review of the commentary, a study
of metabolic gene regulation in yeast was published; where-
in again, a microfluidic device generated oscillatory sti-
mulation profile was used to characterize the response
(Bennet et al., 2008, Nature, July 30 [Epub ahead of print]
PMID:18668041).

REFERENCES

Asthagiri, AR and Lauffenburger, DA (2000). “Bioengineering models of
cell signaling.” Annu. Rev. Biomed. Eng. 2,31-53.

Azizi, F and Mastrangelo, CH (2008). “Generation of dynamic chemical
signals with pulse code modulators.” Lab Chip 8(6), 907-912.

Behar, M, Hao, N, Dohlman, HG, and Elston, TC (2007). “Mathematical
and computational analysis of adaptation via feedback inhibition in
signal transduction pathways.” Biophys. J. 93(3), 806-821.

Chen, KC, Calzone, L, Csikasz-Nagy, A, Cross, FR, Novak, B, and Tyson,
JJ (2004). “Integrative analysis of cell cycle control in budding
yeast.” Mol. Biol. Cell 15(8), 3841-3862.

Furukawa, K, Hoshi, Y, Maeda, T, Nakajima, T, and Abe, K (2005).
“Aspergillus nidulans, HOG pathway is activated only by two-
component signalling pathway in response to osmotic stress.” Mol.
Microbiol. 56(5), 1246-1261.

Groisman, A, Lobo, C, Cho, H, Campbell, JK, Dufour, YS, Stevens, AM,
and Levchenko, A (2005). “A microfluidic chemostat for
experiments with bacterial and yeast cells.” Nat. Methods 2(9),
685-689.

Hasty, J, McMillen, D, and Collins, JJ (2002). “Engineered gene circuits.”
Nature (London) 420(6912), 224-230.

Hersen, P, McClean, MN, Mahadevan, L, and Ramanathan, S (2008).
“Signal processing by the HOG MAP kinase pathway.” Proc.

Natl. Acad. Sci. U.S.A. 105(20), 7165-7170.

Hohmann, S (2002). “Osmotic stress signaling and osmoadaptation in
yeasts.” Microbiol. Mol. Biol. Rev. 66(2), 300-372.

Hohmann, S, Krantz, M, and Nordlander, B (2007). “Yeast
osmoregulation.” Methods Enzymol. 428, 29-46.

Irimia, D, Charras, G, Agrawal, N, Mitchison, T, and Toner, M (2007).
“Polar stimulation and constrained cell migration in microfluidic
channels.” Lab Chip 7(12), 1783-1790.

Keenan, TM and Folch, A (2008). “Biomolecular gradients in cell culture
systems.” Lab Chip 8(1), 34-57.

Khalil, HK (2002). Nonlinear systems, 3rd Ed., Prentice-Hall.

Kholodenko, BN (2006). “Cell-signalling dynamics in time and space.”
Nat. Rev. Mol. Cell Biol. 7(3), 165-176.

Klipp, E, Nordlander, B, Kruger, R, Gennemark, P, and Hohmann, S
(2005). “Integrative model of the response of yeast to osmotic
shock.” Nat. Biotechnol. 23(8), 975-982.

Krantz, M, Becit, E, and Hohmann, S (2006). “Comparative genomics of
the HOG-signalling system in fungi.” Curr. Genet. 49(3), 137-151.

Levchenko, A and Iglesias, PA (2002). “Models of eukaryotic gradient
sensing: application to chemotaxis of amoebae and neutrophils.”
Biophys. J. 82(1, pt. 1), 50-63.

Lipan, O and Wong, WH (2005). “The use of oscillatory signals in the
study of genetic networks.” Proc. Natl. Acad. Sci. U.S.A. 102(20),
7063-7068.

Lok, L (2002). “Software for signaling networks, electronic and cellular.”
Sci. STKE 2002(122), PEII.

Melin, J and Quake, SR (2007). “Microfluidic large-scale integration: the
evolution of design rules for biological automation.” Annu. Rev.
Biophys. Biomol. Struct. 36,213-231.

255


http://dx.doi.org/10.1146/annurev.bioeng.2.1.31
http://dx.doi.org/10.1039/b716634f
http://dx.doi.org/10.1091/mbc.E03-11-0794
http://dx.doi.org/10.1038/nature01257
http://dx.doi.org/10.1128/MMBR.66.2.300-372.2002
http://dx.doi.org/10.1073/pnas.0403790102
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132646
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132646

HEFSP Journal

Mettetal, JT, Muzzey, D, Gomez-Uribe, C, and van Oudenaarden, A
(2008). “The frequency dependence of osmo-adaptation in
Saccharomyces cerevisiae” Science 319(5862), 482-484.

Meyvantsson, I and Beebe, DJ (2008). “Cell culture models in microfluidic
systems.” Annu. Rev. Anal. Chem. 1(1), 423-449.

Oppenheim, AV, Willsky, AS, and Nawab, SH (2002), Signals and
Systems, Prentice-Hall, Englewood Cliffs, NJ.

Paliwal, S, Iglesias, PA, Campbell, K, Hilioti, Z, Groisman, A, and
Levchenko, A (2007). “MAPK-mediated bimodal gene
expression and adaptive gradient sensing in yeast.” Nature (London)
446(7131), 46-51.

Sabounchi, P, Ionescu-Zanetti, C, Chen, R, Karandikar, M, Seo, J, and
Lee, LP (2006). “Soft-state biomicrofluidic pulse generator for
single cell analysis.” Appl. Phys. Lett. 88(18), 183901.

Saito, H and Tatebayashi, K (2004). “Regulation of the osmoregulatory,
HOG MAPK cascade in yeast.” J. Biochem. (Tokyo) 136(3),
267-272.

Schoeberl, B, Eichler-Jonsson, C, Gilles, ED, and Muller, G (2002).

256

“Computational modeling of the dynamics of the MAP kinase cascade
activated by surface and internalized, EGF receptors.” Nat.
Biotechnol. 20(4), 370-375.

Shao, D, Zheng, W, Qiu, W, Ouyang, Q, and Tang, C (2006). “Dynamic
studies of scaffold-dependent mating pathway in yeast.” Biophys. J.
91(11), 3986-4001.

Wang, JC, Li, X, Lin, B, Shim, S, Ming, GL, and Levchenko, A (2008).
“A microfluidics-based turning assay reveals complex growth
cone responses to integrated gradients of substrate-bound, ECM
molecules and diffusible guidance cues.” Lab Chip 8(2),

227-237.

Whitesides, GM, Ostuni, E, Takayama, S, Jiang, X, and Ingber, DE
(2001). “Soft lithography in biology and biochemistry.” Annu.

Rev. Biomed. Eng. 3,335-373.

Yi, TM, Huang, Y, Simon, MI, and Doyle, J (2000). “Robust perfect
adaptation in bacterial chemotaxis through integral feedback
control.” Proc. Natl. Acad. Sci. US.A. 97(9), 4649-4653.

Pulsing cells: how fast is too fast? | Paliwal, Wang, and Levchenko


http://dx.doi.org/10.1146/annurev.anchem.1.031207.113042
http://dx.doi.org/10.1063/1.2195106
http://dx.doi.org/10.1038/nbt0402-370
http://dx.doi.org/10.1038/nbt0402-370
http://dx.doi.org/10.1146/annurev.bioeng.3.1.335
http://dx.doi.org/10.1146/annurev.bioeng.3.1.335
http://dx.doi.org/10.1073/pnas.97.9.4649

