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Abstract
The third meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in
Schizophrenia (CNTRICS) focused on selecting promising measures for each of the cognitive
constructs selected in the first CNTRICS meeting. In the domain of perception, the two constructs
of interest were Gain Control and Visual Integration. CNTRICS received five task nominations for
Gain Control and three task nominations for Visual Integration. The breakout group for perception
evaluated the degree to which each of these tasks met pre-specified criteria. For Gain Control, the
breakout group for perception believed that two of the tasks (Prepulse Inhibition of Startle and
Mismatch Negativity) were already mature and in the process of being incorporated into multisite
clinical trials. However, the breakout group recommended that Steady State Visual Evoked Potentials
be combined with contrast sensitivity to magnocellular vs. parvocellular biased stimuli, and that this
combined task and the Contrast-Contrast Effect Task be recommended for translation for use in
clinical trial contexts in schizophrenia research. For Visual Integration, the breakout group
recommended the Contour Integration and Coherent Motion tasks for translation for use in clinical
trials. This manuscript describes the ways in which each of these tasks met the criteria used by the
breakout group to evaluate and recommend tasks for further development.
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Perceptual processes are viewed as being among the key domains for development of measures
that can be used in clinical trials in schizophrenia. This topic was discussed at the first consensus
meeting of CNTRICS (Cognitive Neuroscience Treatment Research to Improve Cognition in
Schizophrenia, and summarized in Biological Psychiatry vol 64(1)1. At this initial meeting,
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the high priority constructs within perception were identified as: 1) gain control and 2)
integration2. Gain control was defined as processes that allow sensory systems to adapt and
optimize their responses to stimuli within a surrounding context. Integration was defined as
processes linking the output of neurons that individually code local (typically small) attributes
of a scene into global (typically larger) complex structure for guiding behavior. Both of these
domains have features that make them attractive and valuable for clinical trials in schizophrenia
2. Specifically, 1) both can be readily measured in humans, 2) both show evidence of
impairment in schizophrenia, 3) both have moderately strong links to neural circuits, 4) both
are partially understood in terms of the mechanisms, 5) animal models exist for gain control,
but not for integration, 6) links to neuropsychopharmacology are present for both, but are
stronger for gain control, 7) both can be applied to human neuroimaging, and 8) both have
moderate links to functional outcome.

The goal of the third CNTRICS meeting was to identify promising paradigms within these two
perceptual domains. The task was to take paradigms from these domains that were nominated
by a broad group of experts, and to evaluate the paradigms according to a list of criteria to
determine which ones are highly promising for immediate development. The criteria for
evaluating paradigms include the following: 1) construct validity; 2) clarity of a link to neural
circuit; 3) clarity of a link to cognitive mechanism; 4) availability of an animal model; 5) link
to a neural system through neuropsychopharmacology; 6) amenable for use in human
neuroimaging studies; 7) evidence of impairment in schizophrenia; 8) link to functional
outcome in schizophrenia; and 9) good psychometric properties.

A breakout group was devoted to evaluating the nominated paradigms, which are shown in the
table. The purpose of this paper is to briefly summarize some of the key decisions from this
breakout group and then to provide more detailed descriptions of each of the recommended
paradigms.

For the measures of gain control (see Table 1), it was decided that there were two distinctly
different types of measures: those that are already well-established in the schizophrenia
literature and used in multi-site trials versus those that are still largely unexplored. The breakout
group thought that it would not be fair to evaluate both types of measures in the same exercise,
so the two more mature measures (i.e. prepulse inhibition of startle and mismatch negativity)
were separated from the less established measures (i.e. contrast-contrast sensitivity and steady
state evoked potentials to magnocellular vs. parvocellular biased stimuli). The two mature tasks
were considered to be reasonable measures of gain control because they involve neural
adaptation to immediate context, despite the fact that neither was viewed as a prototypical
measure of gain control. It was noted that an assessment of contrast sensitivity to magnocellular
vs. parvocellular biased stimuli could be easily added to the steady state evoked potential
assessment with little additional time or burden, and so the description below includes both
elements.

The two measures of gain control that were recommended for immediate development
(contrast-contrast sensitivity and steady state evoked potentials / contrast sensitivity to
magnocellular vs. parvocellular biased stimuli) scored strongly across the key criteria. Two
areas of limitations were noted, namely that there were not strong animal models, and there
were few data on links to functional status in schizophrenia. The limitation for animal models
was not an absence of models, but that these models typically involved cats or non-human
primates, as opposed to rodents. Rodent models have clear advantages for preclinical drug
development activities because they are much faster and cheaper to implement than cat or non-
human primate models. Hence, these models are more feasible for screening a large number
of compounds for pro-cognitive effects. It was also noted that the steady state evoked potentials
involved electrophysiological methods that would present a substantial practical challenge for
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multi-site clinical trials. Nonetheless, practicality was not a criterion at this stage of paradigm
evaluation.

For the construct of integration (see Table 1), two measures were listed as recommended for
immediate development: the contour integration task and the coherent motion detection task.
A third task, the babble task, was nominated as well. In this task, participants are presented
with a dense array of voices in which it is difficult to detect coherent words or phrases. The
experimenter then measures the degree to which individuals report hearing “spurious” words
or phrases. Hoffman and colleagues have found that individuals who go on to develop
schizophrenia are more likely to report hearing such spurious words or phrases3. Although the
breakout group felt that this task was highly interesting, the group believed that more work
was needed to establish its basic construct validity and neural basis before it was ready for
translation for use in clinical trials contexts. The construct validity for the contour integration
task was considered strong. Some ambiguity in construct validity was noted for the coherent
motion detection task regarding whether the task is mainly conducted by global versus local
processing. Also when evaluated by the criteria, both measures recommended for immediate
translation had similar limitations, including questions about applications to rodent models,
few data on links to outcome in schizophrenia, and few psychometric data such as test-retest
reliability. In the section below, we provide descriptions of each of these tasks for each of the
two constructs to provide guidance for future research that will facilitate the translation of these
paradigms into use in clinical trials contexts in schizophrenia.

Gain Control: Task Recommended for Immediate Development Contrast-
Contrast Effect (CCE) Task
Description

Contrast-Contrast Effect (CCE) Task is based on a well characterized visual illusion in which
contrast sensitivity is strongly modulated by the visual properties of adjacent or surrounding
stimuli4–6 and follows closely the paradigm in a study by Dakin et al.5. In healthy subjects,
the presence of a high contrast surround results in decreased contrast sensitivity, i.e. the same
level of contrast is perceived as being lower when it is surrounded by a high contrast stimulus
compared to when it is not surrounded by this stimulus. This illusion demonstrates contrast
gain control, which is necessary for optimization of visual processing. Subjects view a circular
patch (1.3° diameter) presented in the center of the field of view, which consists of blob-like
shapes (8 c/deg. bandpass-filtered noise) with a contrast of 40%. This central patch is presented
either with or without a high contrast (95%) surround for 1000 ms. Subjects then view a
reference contrast patch and indicate which patch had a higher contrast. The contrast of the
reference patch is varied to provide a psychometric function for contrast perception. An
adaptive method of constant stimuli can be used7. This procedure has the advantage that one
can simultaneously estimate accuracy and precision. The data from each subject can be fit with
a cumulative Gaussian function to estimate the accuracy (bias/intercept) and precision (slope)
of the subject’s contrast perception.

Construct Validity
The large number of consistent and convergent behavioral and functional studies based on this
and related tasks in humans and animals strongly support the construct validity of the CCE
task as a measure of contrast gain control. By definition, gain control is a process in which the
relative magnitude of input and output signals is dynamically modulated in an adaptive manner.
From an ecological perspective, there is an obvious benefit to dynamically adjust contrast
sensitivity in accordance to the visual qualities of a given visual scene. The varying need for
contrast gain is effectively operationalized in this task by the presence or absence of a high
contrast surround. Numerous electrophysiologic studies8–15 and a recent human fMRI
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study16 attest to the modulation of neural activity as a function of the presence of a high contrast
surround. For example, in single unit studies, the response rate of neurons to a visual stimulus
within its classic receptive field is strongly diminished in the presence of a high contrast
surround, which is outside of the neuron’s receptive field. Likewise, a human study by Zenger-
Landholt and Heeger demonstrated strong correspondence between behavioral performance
and V1 activity as a function of the presence of a high contrast surround16.

Neural Systems
There have been a very large number of studies examining the neural basis of contextual
modulation of contrast processing. While the specific neural mechanisms have yet to be
clarified, there has been substantial progress in identifying candidate neural systems and
pathways. Converging evidence from psychophysics and fMRI indicates that the contrast-
contrast effect is linked to visual processing within the primary visual cortex (V1). The study
by Zenger-Landolt found robust contextual modulation of the fMRI signal in V1, V2 and V3,
but the best correlation with behavioral responses and, consequently, perceptual changes
induced by contextual modulation, was with V1 signal changes16. Some investigators have
hypothesized localized lateral inhibitory mechanisms via horizontal fibers within V117 while
others have proposed feedback mechanisms ultimately acting on inhibitory neurons in V18.
The suppressive effects of both of these models are hypothesized to act through GABA
neurotransmission of inhibitory interneurons. Alternatively, feedforward mechanisms, in
which contextual modulation arises in the lateral geniculate nucleus of the thalamus have also
been proposed12,13. In addition to these models, others have postulated that multiple
mechanisms may account for the contrast-contrast effect18,19.

Pharmacological or Behavioral Manipulation of Task Performance
The effects of pharmacological or non-pharmacological treatment on contrast gain control are
unknown at present. However, prior studies have outlined the involvement of dopamine,
GABA and acetylcholine systems in processes related to CCE Task performance.
Consequently, these neurotransmitter systems are potential targets of pharmacological agents
seeking to address deficits in contrast gain control. Dopamine modulation of visual contrast
detection has been documented in animals and humans. It is thought that dopamine’s primary
locus of modulation is mediated by D2 receptors in the retina but some studies have also shown
extra-retinal sites of action (for review see20,21). A recent study by Chen et al. suggests that
the atypical neuroleptics, with relatively less dopamine activity compared to typical
neuroleptics, are not associated with alterations in contrast sensitivity in subjects with
schizophrenia22. One of the most commonly cited mechanisms for the contextual modulation
of contrast sensitivity is through surround suppression. In turn, the predominant
neurobiological mechanism thought to mediate surround suppression is lateral inhibition
through GABA neurotransmission17. Ozeki and colleagues found a modest effect of
application of GABA A receptor inhibition on the magnitude of contextual effects on contrast
sensitivity13. A recent study in monkeys demonstrated anatomic and functional evidence of
nicotinic receptors being a mediator of visual gain control. Nicotinic receptors were found to
be expressed abundantly presynaptically on thalamocortical fibers, specifically in layer 4c of
V1. Furthermore, the application of nicotine at these synapses resulted in response gain to
contrast stimuli that prior to treatment were sub-threshold23. In addition to pharmacological
interventions, some lines of evidence suggest a potential role for cognitive training in treating
deficits in gain control. There is now compelling evidence that top down modulation acts on
early stages of visual processing, even in V124 and for the role of attentional modulation of
contrast gain25.
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Animal Models
The contrast-contrast effect, alternatively referred to as surround suppression in the literature,
has been one of the most replicated findings in visual neuroscience, having been studied
abundantly in animals, mostly cats10,12–14 and macaques8,9,11,15. Although, as alluded to
above, the specific mechanism of the contrast-contrast effect has yet to be clarified, the large
body of neuroanatomical and neurochemical knowledge in the visual system of these animals
provide unparalleled opportunities for translational research. The vast majority of animal
models, however, are based on electrophysiologic and not perceptual dependent measures.
Therefore, the direct translation of animal results to human clinical studies must be done with
this limitation in mind.

Performance in Schizophrenia
There is one published study that has applied the CCE Task to subjects with schizophrenia5.
This study demonstrated notable robustness in detecting a group difference in performance and
interpretive specificity. Healthy and psychiatric control subjects experienced significantly
greater biasing effect of the high contrast surround on contrast perception, compared to patients
with schizophrenia. The robustness of this difference was such that there was nearly complete
separation between patients with schizophrenia and controls on this measure. One of the most
compelling aspects of the CCE Task for schizophrenia research is that patients are predicted
to actually perform better than control subjects. This result strongly argues against generalized
deficits accounting for the results. In addition to the study by Dakin et al., there have been
several other recent studies in schizophrenia that have either employed similar tasks or have
examined contextual modulation of other visual processes26–28. Among these studies, there
is consensus that subjects with schizophrenia demonstrate altered contextual modulation of
visual processing. The convergence of results across multiple paradigms and laboratories
strongly argue for the reliability and robustness of gain control deficits in schizophrenia.

Psychometric Data
An important limitation of this task is that there has not been extensive testing of its
psychometric properties. Test-retest reliability has not been assessed. As a related matter, the
impact of practice or training also requires investigation. An attractive feature of this task is
that psychometric functions can be obtained for subjects. From these functions, separate
indicators of precision (the minimum size of contrast differences that are detectable, which is
indicated by the slope of the function) and bias (reflecting the amount of offset that is needed
between the target and the surround to produce a perceptual match) can be obtained, allowing
us to examine discrimination accuracy independent of response bias (as with other signal-
detection analyses). This flexibility suggests the absence of floor/ceiling effects.

Future Directions
While the availability of well validated animal models of the CCE Task and the accrued
knowledge about the basic neuroanatomical and neurochemical components of the neural
systems and circuits related to this task present an excellent opportunity to identify the specific
neural mechanisms giving rise to deficits in contrast gain control in schizophrenia, several
challenges remain. First, some basic psychometric qualities of this task, such as test-retest
reliability, practice effects, and ceiling/floor effects, must be assessed. Although the deficit in
schizophrenia appears very robust, the CCE Task must be applied to independent samples by
additional investigators in order to assess its reliability. Second, there is at present a paucity of
knowledge on the efficacy of any interventions in schizophrenia. There are several potential
pathways that may serve as targets for non-pharmacological and pharmacological treatments
and present future opportunities of study. Finally, there is a great need, on a conceptual and
empirical level, to incorporate contrast gain control deficits within a larger theoretical
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framework for the behavioral and higher-order cognitive deficits in schizophrenia. This effort
may take the form of uncovering correlations between CCE Task deficits and clinical or
cognitive features.

Steady-state visual evoked potentials and contrast sensitivity to
magnocellular- and parvocellular-biased stimuli
Description

This particular steady-state visual evoked potential (ssVEP) task using magnocellular- (M) or
parvocellular-biased (P) stimuli was developed by Zemon and Gordon29. This task is based
on the differential response to contrast of the M and P pathways, which begin in the retina and
project via the lateral geniculate nucleus (LGN) to primary visual cortex. The M pathway shows
a steeply rising increase in response to increases in low contrast and then nearly saturates at
about 16–32% contrast30,31 (Figure 1A). The P pathway does not respond until about 10%
contrast or greater and has a linear increase in response throughout the entire contrast range
30,32. The slope of the linear portion of the contrast response curve is referred to as contrast
gain, and it is about ten times greater for the M than P pathway.

To emphasize contributions from the M pathway to the ssVEP, isolated check stimuli (Figure
2) were kept within the low-contrast region 29. To emphasize contributions from the P pathway
to the ssVEP, checks were modulated around a high static contrast (pedestal) to avoid the low-
contrast regions where magnitudes of M-pathway responses rise steeply with increase in
contrast.

A key aspect of the procedure is that the same depths of luminance modulation (DOM) (0, 1,
2, 4, 8, 16, and 32%) are used for both the M- and P-biased conditions. To produce the M-
biased conditions in which stimuli appear and disappear, the DOM of the checks is equal to
the mean contrast (pedestal). Thus, the checks reach a peak contrast double that of the mean
value. For example, if the mean of the checks is set at 4%, then the DOM is also 4% and the
pattern reaches a peak contrast of 8% at one point in the cycle and 0% contrast a half cycle
later. Under the P-biased condition, a high mean contrast (pedestal) of 48% is often used.

A second important feature is that data can be collected quickly. Responses are typically
recorded from an electrode at a midline occipital site (Oz) referenced to a second electrode on
the vertex of the head (Cz). Patterns are modulated quickly (e.g., at 12 Hz) in a contrast sweep
such that DOM is increased in each second of a 7-second run. Thus, in a single run, all 7 DOMs
are presented and there are 12 stimulus presentations per second. The M- and P-biased
conditions are presented separately and there are 10 runs of each condition. Fourier analysis
is used to obtain the response at the stimulus frequency for each 1-s EEG epoch in each run
and mean amplitude and phase values are computed over the 10 runs. Signal-to-noise ratios
(SNR) are also obtained 33–35 as are estimates of contrast gain and contrast gain control 33,
34.

A second task that may be used to assess M- and P-pathway responses involves psychophysical
contrast sensitivity. This is a classic behavioral task that has been used for over 50 years36–
38. Sine-wave gratings presented at various spatial frequencies from low to high are the typical
stimuli. Spatial frequency refers to the number of pairs of light and dark bars in a degree of
visual angle such that lower spatial frequencies indicate wider bars and higher spatial
frequencies indicate thinner bars. Different psychophysical methods have been used to measure
contrast sensitivity functions (CSF)37. A preferred method is two-alternative forced-choice
tracking in which, for instance, gratings are presented randomly to one half of a visual display,
while the other half has a uniform field33. Participants are asked to state which side of the
display contains the grating. Contrast is varied across trials using an up-down transform rule
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to determine the contrast threshold for each spatial frequency condition (e.g., the contrast at
which the presence of the grating is correctly detected 70.7% of the time). Contrast sensitivity
is the reciprocal of this threshold. High contrast sensitivity indicates good performance. CSFs
are inverted U-shaped functions with a peak in the mid-range of spatial frequencies (4–6 cycles
per degree) and fall-off at lower and higher spatial frequencies.

Construct Validity
Gain control, as defined in the CNTRICS initiative, refers to processes that allow sensory
systems to adapt and optimize their responses to stimuli within a particular context 2. The
nonlinear response to contrast with steep gain at low contrast and amplitude compression and
phase advance with increases in contrast was first described in cat retinal ganglion cells and
termed “contrast gain control” 39,40. Contrast gain control refers to the change in slope of the
amplitude function as contrast increases. Contrast gain control is present in M, but not P,
neurons41 and divisive contrast gain control is operating at higher contrasts to limit the
responses of the M pathway. The divisive contrast gain control in the M pathway is thought to
arise from shunting inhibition, which appears to be GABAA-mediated29,42.

Thus, unlike the P response to contrast which shows low gain and is linear over the entire range
of contrast, the M response to contrast is an example of adapting and optimizing responses by
showing high gain (slope) at low contrast where it is needed in order to respond to low contrast
and, given that responses cannot continue to rise at that rate, compression of responses at higher
contrast so that the M pathway can still respond to high contrast, albeit with lower gain.

The psychophysical contrast sensitivity task generally produces thresholds that are in the low-
contrast range (i.e., produces responses with high contrast sensitivity). High contrast sensitivity
in the CSF indicates high contrast gain. In addition, the M pathway uses contrast gain control
and CSFs reflect M-pathway responses under a variety of conditions.

Neural Systems
The contrast response functions obtained in healthy humans under M- and P-biased pedestal
ssVEP conditions29,33,43,44 (Figure 1C and 1D) are very similar to those recorded from M
and P neurons in macaque retina (Figure 1A)30,41,45,46 and LGN30,41,45,46, supporting the
concept that neural M and P responses are being examined. In psychophysical studies of
contrast sensitivity, transient and sustained mechanisms have been posited to explain the
resulting CSF. These psychophysical mechanisms appear to correspond to M and P activity,
respectively. Changes in the shape of the CSF with manipulation of spatiotemporal stimulus
conditions have led researchers to conclude that brief presentations of gratings over a wide
range of spatial frequencies yield M-dominated responses, and long duration presentation of
spatial frequency gratings yield P-dominated responses47.

Pharmacological or Behavioral Manipulation of Task Performance
For the contrast response curve, microinfusion of NMDA antagonists into cat LGN and primary
visual cortex reduce contrast gain as well as the maximum response (Figure 1B)48,49. NMDA
may also be involved in the high contrast sensitivity seen in the psychophysical contrast
sensitivity task. Dopamine20,50 and nicotinic cholinergic receptors23 appear to play a role in
contrast sensitivity measurements.

Animal Models
Like humans, monkeys have M and P pathways and produce contrast response curves in
electrophysiological studies that are very similar to the ssVEP functions described above for
humans. Although cats do not have M and P divisions, they produce contrast response curves
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similar to those recorded from M cells in primates48,49. In addition, similar results were seen
for monkeys, in which recordings were obtained from the dura mater above the brain, and
humans using the same apparatus and ssVEP stimuli described above51.

CSFs can be obtained psychophysically as well as electrophysiologically. CSFs have been
obtained in a number of species including goldfish, cat, and falcon and can be obtained
behaviorally in macaques52,53.

Performance in Schizophrenia
To date, two studies in which the ssVEP task was used demonstrated preferential deficits in
the M pathway in schizophrenia patients including decreased contrast gain33,43. A subset of
patients were also found to have decreased shunting inhibition54. A number of studies 33,
55–59 though not all60 show decreased contrast sensitivity in patients with schizophrenia. The
high contrast sensitivity suggests M-pathway deficits, although others have argued for a P-
pathway role in this deficit within the high spatial frequency region.

Psychometric Data
An advantage of the ssVEP task is that behavioral responses are not required and participants
only have to fixate on the screen, which reduces the burden. The 95% confidence intervals for
the ten runs per person demonstrate consistent data and good reliability within an
individual29. In addition, Signal to Noise Ratios (SNRs) are typically high, indicating signals
that are considerably larger than the variability within a condition29,33,43. Also, the large
between-group effects observed using SNR indicate good reliability within a group33,43. A
number of individuals were re-tested on another day and results show good reproducibility
(Butler et al., unpublished observations). CSFs do not have a ceiling effect, but could have a
floor effect because threshold can never be greater than 100% contrast (i.e., contrast sensitivity
of 1 is a lower limit in performance). Practice effects are negligible with the 2-alternative forced
choice tracking method37. In addition, there is good agreement in observers in the shape of
the function and absolute values of contrast sensitivity.

Future Directions
For the ssVEP, a full study of reproducibility across days needs to be done. While a body of
single-cell data exists to support the role of M and P pathways in the generation of both ssVEP
and CSFs, additional single-cell investigations may serve to support the use of macaques as
an animal model and the conclusion that there are distinct contributions from M and P cells to
these response measures. This work would include examination of the specific pedestal
conditions for ssVEP and a variety of spatio-temporal conditions for CSFs in single cell studies
of M and P neurons. For both tasks, further patient, prodromal, and pharmacological studies
are needed. In particular, the amenability of ssVEP and CSFs to modulation by
pharmacological or behavioral interventions needs to be examined.

Gain Control: Already Mature Tasks Prepulse Inhibition of the eyeblink
component of the startle blink
Description

The startle response is a set of reflexive responses to strong, sudden acoustic or tactile stimuli
that can be studied in all mammals. Prepulse inhibition of startle (PPI) is considered a measure
of “sensorimotor gating” because it involves both sensory stimuli and motor responses. In PPI,
the startle response elicited by a startling stimulus is measured in the presence or absence of a
weak prepulse stimulus, which can be in the same or a different modality. The weak prepulse
strongly inhibits the response to the subsequent startling stimulus. PPI is not a form of
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habituation and is not correlated with auditory gating measured as event-related potentials
elicited by pairs of identical clicks presented at 500 ms intervals61. In humans, startle is
assessed in most cases via the eyeblink component of the startle reflex, using
electromyographic recordings. In animals, the whole-body flinch aspect of the startle response
is quantified using an accelerometer that is sensitive to dynamic movements.

Most studies use brief (20 – 40 ms) startle-eliciting acoustic stimuli, with intensities varying
from 105 to 115 dB and presented for 20 to 50 ms. On some trials in a test session, the startle
pulse is preceded at 30 ms to 500 ms by a prepulse, which is not thought to elicit a startle
response by itself. PPI is usually expressed as the percentage of inhibition of the startle
amplitude on prepulse trials relative to the amplitude during startle pulse trials, although
difference scores and raw values should be assessed especially when group differences in startle
reactivity are evident 62.

An extensive literature in both humans and animals has demonstrated the parametric
responsiveness of PPI to many factors, including: stimulus intensities, rise-times, durations,
and modalities; controlled vs. non-controlled background noise 63; pure tone stimuli vs. white
noise stimuli 64 instructions given to the participants regarding attending to the stimuli 65 66 
67; sex differences 68; strain differences 69 70 and, in humans, differences in which eye is
monitored as well as smoking behavior and personality factors.

Construct Validity
Gating functions are believed to be impaired in schizophrenia, which theoretically can lead to
increased distractibility, cognitive fragmentation, and thought disorder 71 72 73 74. PPI is
thought to reflect a largely automatic, pre-attentional, and unlearned sensorimotor gating
mechanism. Indeed, deficient PPI in schizophrenia has been observed with intervals between
the prepulse and startle pulse being too short (e.g. 30 or 60 ms) to be influenced by the conscious
allocation of attentional resources 75. In some descriptions, PPI is seen as a mechanism to
protect the processing of the first of successive stimuli. In other contexts, PPI has been
considered as an operational measure of gain control impacting perception.

Neural Systems
The similarity of PPI across species supports the suggestion that the neurobiological
mechanisms underlying the PPI in humans can be examined productively in animals 76 77 
78. Whereas structures at the level of the brainstem control the startle response per se 79 80
forebrain structures modulate the inhibitory functions of the prepulse via cortico-striato-
pallido-pontine circuitry 81 80 77. This modulatory system includes the limbic cortex (medial
prefrontal cortex, amygdala, and ventral hippocampus), the thalamus, the ventral striatum
(nucleus accumbens), the ventral pallidum, and the pontine tegmentum 80 82 78 77. Most if not
all of these structures have also been implicated in the pathophysiology of schizophrenia 77.
Furthermore, fMRI studies have shown that most of these regions are altered by startle and/or
PPI in humans, some being affected differentially in schizophrenia patients relative to control
subjects 66 83.

Pharmacological or Behavioral Manipulation of Task Performance
An extremely extensive literature describes the effects of pharmacological manipulations on
startle and PPI in rats (summarized in Geyer et al., 2001 84 and Jones et al., 2008 85). In mice,
the literature on pharmacological effects is also substantial and is growing 86. In addition,
many of the genes implicated in schizophrenia have been examined in mice by studying the
effects of relevant genetic manipulations on PPI 86 87. In both rats and mice, strain differences
and gene expression studies have also added to our understanding of the neurobiological
substrates influencing PPI 69 70. In humans, more limited pharmacological data are available
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(reviewed in 75 88 and 89. It should be noted that some disparities between pharmacological
effects on PPI have been noted when comparing mice with rats or rats with humans 90 91 78 
77 92. Recent work has begun to explore the ability of some atypical antipsychotics, and
potentially other treatments, to increase PPI specifically in healthy volunteers who exhibit low
baseline levels of PPI 93. Such studies may enable the development of proof-of-concept studies
for either antipsychotic or pro-cognitive agents.

Animal Models
The cross-species nature of startle and PPI enables the use of animal models of induced deficits
that are extremely similar to the gating deficits seen in schizophrenia. Beginning with the initial
demonstrations of the ability of dopamine agonists and glutamatergic antagonists to disrupt
PPI in rats 94, the rodent PPI models have evolved into at least four distinct models 95 84 77.
These models have PPI measures in common but are differentiated by the manipulations used
to disrupt PPI: 1) dopamine agonists; 2) serotonin agonists; 3) N-methyl-D-aspartate (NMDA)
receptor antagonists; and 4) developmental manipulations such as isolation rearing or neonatal
lesions of the ventral hippocampus 84. In contrast to the first three models, which are based
on changes induced by acutely administered psychotomimetic drugs, the fourth PPI model may
help to assess environmental or developmental contributions to PPI deficits 96 97 98 . In
addition to rodents, some work has begun to establish non-human primate models of PPI and
pharmacological manipulations relevant to schizophrenia 99.

Performance in Schizophrenia
As first reported in 1978 100 and confirmed subsequently in many laboratories (reviewed in
75 64), PPI is reduced in schizophrenia patients. PPI deficits in schizophrenia patients are seen
in patients treated with first generation antipsychotic drugs as well as in first-break patients
who had never been treated with any antipsychotics 101. Although schizophrenia was the
original focus of psychiatric PPI studies, subsequent research has demonstrated that PPI is
reduced in patients suffering from a variety of neuropsychiatric disorders 75 64. For example,
PPI deficits have also been found in OCD, Tourette’s Syndrome, Huntington’s Disorder, panic
disorder, bipolar disorder, Asperger’s syndrome, and others 102. These disorders are all
characterized by PPI deficits and by abnormalities of gating in sensory, motor, or cognitive
domains.

Psychometric Data
The several reviews cited above include extensive information regarding the psychometrics of
PPI. In addition, it should be noted that PPI is quite stable over time in rodents and in both
healthy human volunteers and clinically stable patients with schizophrenia 103 104.

Mismatch Negativity
Description

Mismatch negativity (MMN) is an event-related potential (ERP) response that is elicited when
a series of standard stimuli is interrupted periodically by deviant, or “oddball,” stimuli. MMN
can be elicited using auditory and visual deviant stimuli that differ in one type of physical
property (e.g., pitch, duration, intensity) from the standard stimuli. Although MMN can be
elicited with visual stimuli, it is most commonly recorded using auditory stimuli and there is
more information on the neural subsystems and psychopharmacological effects on MMN with
auditory stimuli. Thus, this brief review will focus largely on the auditory-elicited MMN. For
a more in-depth review, including discussion on heritability and genes associated with MMN,
see 105.
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In the typical auditory MMN paradigm, a standard auditory stimulus (e.g., a 1000 Hz, 50 ms
tone) is presented repeatedly with a brief interstimulus interval (e.g., 500 ms). On
approximately 10% of the trials, a deviant auditory stimulus that differs in one physical property
(e.g., a 1000 Hz, 100 ms tone) is presented. Subjects are usually instructed to ignore the tones,
are shown a silent movie, or perform a secondary visual processing task. Mismatch negativity
is calculated as the difference between the ERP elicited by the deviant stimuli and the ERP
elicited by the standard stimuli. Response onset can occur as early as 50 ms after the onset of
the deviant stimuli and peaks at approximately 200 ms post-onset. Mismatch negativity elicited
by auditory stimuli has its maximum response at fronto-central sites. In humans, MMN reflects
a largely preattentive and automatic measure of change detection and is thought to represent
an echoic memory process 106 107. MMN is not under the voluntary control of the subject and
does not require any overt response. Therefore, MMN is seen as an effective means to measure
preattentional auditory mechanisms in neuropsychiatric populations in which there may be
questions about whether subjects are fully able and motivated to perform active cognitive tasks.

Neural Systems
Several different studies, using varying methodologies, have been conducted to determine the
neural source of the auditory MMN response. Source localization of the MMN ERP 108,
magnetoencephalography 109 and functional MRI 110 studies have localized the auditory
MMN to the primary and secondary auditory cortices. Specifically, this includes the superior
temporal gyrus, while others find additional contributions from bilateral dorsolateral prefrontal
cortices 111.

Pharmacological or Behavioral Manipulation of Task Performance
N-methyl-D-aspartate (NMDA) receptor-mediated glutamate dysfunction is thought to
underlie MMN deficits in certain neuropsychiatric diseases, including schizophrenia 112.
NMDA antagonists have been shown to diminish MMN amplitude in primate models 112 as
well as selectively diminish MMN amplitude in healthy control subjects while sparing other
auditory-related ERP activity 113 114 115.

Animal Models
Animal models of MMN are very valuable in the neuroanatomical and psychopharmacological
examination of normal and dysfunctional MMN. Reliable MMN data that closely match
MMNs recorded in humans have been recorded from rats 116, cats 117, chimpanzees 118, as
well as monkeys 112. The results of these studies imply that animal models can be used to test
newly developed pharmacological treatments to improve MMN in schizophrenia patients.

Performance in Schizophrenia
Deficits in mismatch negativity amplitude and latency have repeatedly been shown in
schizophrenia patients using varying deviant stimuli, including duration deviants, frequency
deviants, and intensity deviants 119 120 121 122. A meta-analysis of MMN studies in
schizophrenia patients 123 showed a mean effect size of approximately 1.0. Moreover, it
appears duration deviant stimuli tend to result in a larger MMN deficit compared to frequency
deviant stimuli, though the difference was not statistically significant. MMN also appears to
be insensitive to antipsychotic medication in schizophrenia, as it is not affected by first-
generation antipsychotic medications or risperidone, olanzapine or clozapine 124 125 126.

Mismatch negativity deficits in schizophrenia have recently been shown to be correlated with
measures of functional outcome. In a sample of chronic schizophrenia patients, Light and
Braff121 found that MMN was significantly negatively correlated with the Global Assessment
of Functioning (GAF) scale127 as well as a measure of independent living128, with MMN
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accounting for up to 42% of the variance in the functional status of the patients. Moreover, the
relationship between MMN and functional status in schizophrenia patients has been shown to
be stable over time 122. These connections to functioning have been replicated. Kiang et al.
129 found that MMN elicited by duration-deviant tones was associated with GAF scores in a
sample of 18 schizophrenia patients. Kawakubo and Kasai130 found that poorer duration
MMN, elicited using phonemes rather than pure tones, was correlated with lower GAF scores.
This group131 also found that better phoneme-deviant MMNs were associated with better
scores on a social skills acquisition program after 3 months in a sample of 13 schizophrenia
patients. Using a visual MMN task, Urban et al. 132 found that schizophrenia patients below
the median on the GAF had significantly smaller MMN amplitudes than normal controls and
patients who were above the median on the GAF.

Psychometric Data
In healthy controls, MMN has high test-retest reliability coefficients in the range of 0.60–0.80,
with higher reliability seen using duration deviant stimuli 133. In schizophrenia patients, MMN
also appears to be stable over time, with one study finding no differences in MMN amplitudes
recorded at least one year apart 122. Mismatch negativity amplitude in frontal sties also appears
to be stable in schizophrenia patients during acute and post-acute phases 134, suggesting that
MMN amplitude deficits are a relatively stable trait characteristic of the disease.

Visual Integration Contour Integration Test
Description

In this task, the visual integrative mechanisms responsible for linking contour segments
together are probed by employing stimuli with a continuous path of Gabor signals embedded
in noise (see Figure 3). Participants are typically asked to either identify the location of the
contour (e.g., a line or a circular shape, depending on the task) within the larger stimulus field,
or to determine in which direction an egg-shaped contour is pointing (left or right) in a 2-
alternative forced-choice task. Gabor elements are Gaussian-modulated sinusoidal luminance
distributions that closely model the known spatial frequency processing properties of cells in
area V1. Use of Gabor elements provides superior measurement of orientation sensitivity, and
grouping of orientation cues, compared to stimuli with unknown effects on V1 neurons (e.g.,
arbitrarily constructed lines and dots). The embedded contours in stimuli employing Gabor
elements cannot be detected by purely local filters or by the known types of orientation tuned
neurons with large receptive fields135. The long-range orientation correlations along the path
of the contour can only be found by the integration of local orientation measurements into an
emergent shape representation (see Figure 3).

Construct Validity
Numerous studies using such tasks have explored the conditions under which human observers
perceive or do not perceive contours (reviewed in2). These findings support Field et al.’s
136 concept of the “association field,” in which neurons whose orientations are correlated in
a manner that suggests the presence of a contour have facilitatory effects on each other, whereas
neurons that encode elements whose orientation varies randomly with surrounding elements
have an inhibitory effect on each other. Moreover, findings from psychophysical studies are
consistent with computational models derived from information theory, in which receptive and
contextual fields interact to enhance the salience of phenomena that can be grouped based on
statistical regularities 137 138. Validation of the concept of visual integration from
psychophysical studies has come from tasks that manipulate one or more of the following 3
parameters: 1) signal noise ratio (Delta or Δ) which refers to ratio of the average spacing
between adjacent background elements to the average spacing between adjacent contour
elements; contours are more difficult to detect as the ratio decreases (see Figure 3); 2) the
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orientation of contour elements; contours are more difficult to detect as the elements are jittered
and the correlation between the angles of adjacent elements decreases (see Figure 4); and 3)
the spacing between contour elements; for children, but not healthy adults, contours are more
difficult to detect as contour elements become further apart, even when Δ is kept constant by
removing background elements as contour element spacing increases (see Figure 5).

Neural Systems
The behavioral findings using contour integration tasks are supported by microelectrode studies
in animals that indicate facilitatory effects of flanker elements with orientations similar to, or
strongly correlated with, a target element, and inhibitory effects of random orientation
surrounds139. Moreover, behavioral findings fit closely with the predictions of the cortical
processing model of visual integration proposed by Yen and Finkel140 in which horizontal
connections mediate context-dependent facilitatory and inhibitory interactions among neurons
coding stimulus orientation. The contour integration task has demonstrated sensitivity to visual
integration deficits in both anisometropic and strabismic ambyopia, disorders where integration
deficits are limited to the early visual cortex regions subserving the disordered eye, showing
clear differences between amblyopic and fellow eyes141 142. FMRI data in humans143 and
monkeys144 indicate a visual cortex basis for contour integration, and a recent study in
schizophrenia patients and healthy controls indicate that these same regions (e.g., V2–V4) are
underactivated during contour perception in schizophrenia145. In addition, recent work
suggests that contour integration mechanisms may be mediated by NMDA-mediated
glutamatergic effects146.

Pharmacological or Behavioral Manipulation of Task Performance
We are unaware of studies with these specific contour integration tasks that have examined
whether performance can be modified through either pharmacological or behavioral
interventions. However, as noted below, performance can improve during treatment in
individuals with schizophrenia147 148, suggesting that such deficits are amenable to
modification. Given hypotheses about the mechanisms supporting contour integration
described above, promising avenues for pharmacological manipulation would be agents that
modulate NMDA receptor function146.

Performance in Schizophrenia
The contour integration task has shown evidence of impairment in schizophrenia in all studies
in which it has been used145 149 148 150 151 152 153 154. Performance on the contour
integration test is related to level of disorganization, but not positive or negative symptoms in
schizophrenia147 155 149 148. Moreover, among schizophrenia patients who demonstrate
impairments on admission to acute-care-level treatment, test scores improve significantly over
time, and the degree of change is related to improvement in disorganized symptoms147 148.

Psychometric Data
Past studies have demonstrated adequate reliability and minimal practice effects. Silverstein
et al156 tested 87 people (including schizophrenia patients, other psychotic patients, and
nonpatient controls) over two consecutive days using a signal-noise ratio (Δ) task variant. For
controls only, across the first 2 days (collapsed across both conditions) the single measures
ICC was .77, p<.001. For the entire sample the single measures ICC was .66, p=.005 (Footnote
1). In a study using a version of the task also employing a signal-noise ratio (Δ) manipulation,
there were no significant differences in test-retest performance across 4 same-day
administrations in children, or across 6 same-day administrations in adults157. In addition,

(1)These reliability estimates were calculated for the current paper and are not found in the original article cited.
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studies of practice effects in nonclinical and amblyopic samples indicate virtually no change
in performance across repeated administrations in a single day, or two consecutive
administrations on the same day153 157 using a version of test that varies Δ only. When
multiple administrations are used across multiple days, however, allowing for sleep-dependent
perceptual learning, some minimal practice effects were observed153 154. For example, using
the orientation manipulation variant of the test with 12 healthy controls for five consecutive
days, Day 5 was the only day where scores differed significantly (p=.015) from Day 1154.
Kovacs et al158 reported that, when tested over three consecutive days, practice effects were
not evident until the third day, and these were greater in children than in adults. Silverstein et
al153, using a version that varied Δ only, demonstrated the largest practice effects. However,
in this study, the test was given twice a day for four consecutive days. To date, studies have
not specifically assessed practice effects or test-retest reliability over periods greater than 5
days. However, in Uhlhaas et al.148, non-disorganized schizophrenia patients, psychotic
patients with disorders other than schizophrenia, and psychiatric controls did not perform
differently when tested on admission and discharge to a psychiatric unit (mean length of stay
was 23 (SD=22.2) days). Only the disorganized schizophrenia group demonstrated significant
improvement, and this was significantly correlated with reduction in disorganized symptoms.

Future Directions
Future research will need to determine which of the three task versions described above are
the most sensitive to visual integration deficits in individuals with schizophrenia. In addition,
although each version of the task is relatively brief (20 minutes or shorter), work is needed to
determine the minimum number of trials necessary both to discriminate patients from controls,
and to be sensitive to treatment effects. In addition, work is needed to determine whether visual
integration deficits as measured by contour integration are amenable to modulation by
pharmacological or behavioral interventions.

Coherent motion detection
Description

Detection of coherent motion is a perceptual task used widely for assessing visual motion
processing. Like many perceptual tasks, development of the coherent motion detection task
159 160 is based on the premise that, by systematically adjusting the signal strength of visual
motion, one can quantitatively determine properties of the visual motion processing system.
As one such property, perceptual performance during motion detection can be measured as a
function of signal strength of the visual stimulus.

Coherent motion detection tasks utilize a specific motion stimulus called a random dot pattern
(RDP) that consists of signal and noise components (Figure 6). The signal is an array of dots
moving coherently in one direction (e.g. rightward) whereas the noise is another array of dots
moving in random directions. These two arrays of moving dots interleave spatially within a
certain region as well as temporally within a certain display time. The proportion of the signal
dots in a RDP determines its motion signal strength – the greater the percentage of the signal
dots, the stronger motion signal strength a random dot pattern possesses. The task, when applied
in a behavioral domain, is to identify the direction of motion of the signal dots in the presence
of the noise dots.

Construct Validity
Given the special spatial and temporal configurations in a RDP, the ability to detect the
direction of motion provides an effective measure of visual integration. To perceive the
direction of motion of the stimulus, one must integrate visual information about the signal dots
that are distributed spatially in random locations and temporally at random times. Focus on
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one particular spatial location or one particular time would not lead to success in detecting the
globally-defined direction of motion. The requirement of combining visual signals across space
and time makes coherent motion detection a useful task for assessing integration, and therefore
lends the task a high degree of construct validity. It has been used in studying a variety of
populations – human and animal, young and elderly, healthy and diseased.

Neural Systems
Perceptual performance in coherent motion detection is mediated by neural computation in the
visual motion systems. The primary neural computation includes direction selectivity and
spatial integration – the former refers to a property that is characterized as the selective
responsiveness of a neural unit to one specific direction of motion (but not to the opposite
direction of motion), whereas the latter refers to a summation process that combines visual
signals across space. Neurophysiological studies in monkeys have identified neural units that
are responsive to coherent motion 161. Robust neuronal responses to coherent motion in
motion-sensitive brain areas such as the Middle Temporal (MT) Area have been directly linked
to correct perceptual responses 162. Neuroimaging studies in humans have shown that the same
cortical regions (e.g., MT) are significantly activated in the presence of coherent motion 163,
confirming the evidence found from neurophysiological studies. One important feature in these
findings is that the magnitude of both neuronal responses and cortical activations at MT is
proportional to the signal strength of coherent motion, mimicking the established relationship
between accuracy of perceptual performance and signal strength of coherent motion.

Pharmacological or Behavioral Manipulation of Task Performance
Several types of neurotransmission appear to modulate detection of coherent motion.
GABAergic activity plays an important role in forming and shaping direction selectivity, a
neural property essential for motion detection164. Agonistic action of serotonin (via
Psilocybin) can lead to a selective impairment in detection of coherent motion165. The impact
of pharmacological modulations on detection of coherent motion is still an area that awaits
further investigation.

Performance in Schizophrenia
Compared with healthy individuals, schizophrenia patients perform the task with significantly
lower accuracies and require greater levels of signal strength in order to achieve similar levels
of accuracies 166–169. This result indicates that processing of coherent motion signals is
deficient in this psychiatric disorder. On the other hand, a preliminary study showed that the
relatives of schizophrenia patients and patients with bipolar disorder had normal performance
on this task, suggesting specificity of coherent motion detection deficit in clinical schizophrenia
170. This result, however, needs to be confirmed in larger and independent populations. The
deficient performance in detecting coherent motion has been associated with smooth pursuit
eye movement dysfunction in schizophrenia patients 166,171.

Cortical mechanisms underlying coherent motion detection have also been investigated in
schizophrenia. Although normal detection of coherent motion primarily involves the occipital
cortex, decreased neural activation in occipital areas such as MT (as expected), as well as
increased neural activation in the frontal cortex, were found while schizophrenia patients
performed this task 172. This result suggests that coherent motion detection in schizophrenia
involves not only sensory but also cognitive processing in the cortex.
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Psychometric Data
Many kinds of physiological (as well as behavioral) data are available to attest to the validity
of the coherent motion detection task in measuring visual integration. Yet, the reliability of
performance measurements in individuals, particularly in patients, still needs to be evaluated.

Future Directions
Thus far, this task has been used primarily within research laboratories. How to adapt this
laboratory-based task in clinical settings is a future direction that merits effort. Additionally,
the interaction between visual and cognitive processing remains an elusive topic in
schizophrenia research. Detection of coherent motion may provide a probe into both visual and
visual cognitive processes, in which the bottom-up and top-down mechanisms pertaining to
visual integration can be concurrently and comprehensively evaluated in schizophrenia
patients. Another prospective direction may be to evaluate the efficacy of antipsychotic agents
on modulating behavioral performance during coherent motion detection tasks.
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Figure 1.
(A) Contrast response functions recorded from macaque monkey retinal ganglion cells (adapted
with permission from Kaplan and Shapley 1986). M cells show much higher gain (slope) than
P cells at low contrasts. The initial gain of the M cells is shown in the dashed straight line
derived from the M-cell curve. The gain of the P cells is the dashed line fitted to the P-cell
function; (B) NMDA antagonists produce shallower gain at low contrast and a much lower
plateau in visual evoked potential responses, indicating decreased signal amplification (adapted
with permission from Kwon et al 1992); (C and D) Visual evoked potential responses (adapted
with permission from Butler et al., 2005) using the M- and P-biased ssVEP technique described
in this paper. The patient visual evoked potential contrast response curve in the M-biased
condition shows similar decreased gain at low luminance contrast and decreased plateau as
seen with NMDA antagonist administration, indicating decreased signal amplification.
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Figure 2.
Example of isolated check stimuli used in the ssVEP task.
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Figure 3.
Examples of Gabor-defined contours with different D values (top left: D=1.4, top right:
D=0.85.). In the bottom panels, Gabor elements were replaced by disks to demonstrate the
importance of correlated orientation cues in visual integration. Without orientation cues in
these bottom panels, the contour remains invisible at D<1, and this is the range where visual
integration depends on long-range spatial interactions. Note that these panels focus on the
stimulus region containing the contour only. In the actual test stimuli the areas represented by
the panels below would comprise about 1/8 of the total stimulus display.
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Figure 4.
Samples of images from the 2 alternative forced choice (2AFC) version of the task. Top left -
0 degree jitter, top right - 7–8 degree jitter, Bottom left - 15–16 degree jitter, Bottom right -
27–28 degree jitter. These panels show only the region of the display containing the contour.
The actual stimuli contain approximately 75% additional space that contains only noise
elements.
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Figure 5.
Performance in the contour-integration task is determined by the relative noise density (D),
and it might also be determined by the absolute (cortical) spatial range of interactions (i.e., the
distance across which elements can be integrated into a single object). Left panel - contour
spacing is small: 4.5λ (λ= wavelength of Gabor signal, or the width of the dark section of the
stimulus). Right panel - contour spacing is large: 9 λ. These are partial presentations of the
cards showing only the contour area. D=0.85 in both cases. Adult performance as defined by
D at threshold does not vary significantly in the tested contour-spacing range, which means
that adults are limited only by relative noise density. However, children integrate large-spaced
contours with a greater difficulty, which indicates the possibility of shorter interaction ranges
in their case, and also in cases of neuropsychiatric disorders with compromised contour
integration.
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Figure 6.
Examples of stimuli from a coherent motion task.
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Table 1
Perception in Schizophrenia

Gain control: Neurons adapting their response levels to take into account their immediate context to make best use of a limited dynamic signaling-range.

Tasks Recommended for Immediate Development:

1 Contrast-Contrast Effect (CCE) Task

2 Steady state visual evoked potentials to magnocellular vs. parvocellular biased stimuli (with contrast sensitivity task)

Already Mature Tasks:

Prepulse Inhibition of Startle

Mismatch Negativity

Integration: The processes linking the output of neurons that code local attributes of a scene into global complex structure.

Tasks Recommended for Immediate Development:

1 Contour Integration Task

2 Coherent Motion Detection Task
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