
Tissue engineering has shown promise for the development of 
constructs to facilitate large volume soft tissue augmentation in 
reconstructive and cosmetic plastic surgery. This article reviews the 
key progress to date in the field of adipose tissue engineering. In order 
to effectively design a soft tissue substitute, it is critical to understand 
the native tissue environment and function. As such, the basic physi-
ology of adipose tissue is described and the process of adipogenesis is 
discussed. In this article, we have focused on tissue engineering using 
a cell-seeded scaffold approach, where engineered extracellular matrix 
substitutes are seeded with exogenous cells that may contribute to 
the regenerative response. The strengths and limitations of each of 
the possible cell sources for adipose tissue engineering, including 
adipose-derived stem cells, are detailed. We briefly highlight some 
of the results from the major studies to date, involving a range of 
synthetic and naturally derived scaffolds. While these studies have 
shown that adipose tissue regeneration is possible, more research 
is required to develop optimized constructs that will facilitate safe, 
predictable and long-term augmentation in clinical applications.

Introduction

The focus of this review is on adipose engineering using a cell-
seeded scaffold approach. Tissue engineering holds promise for the 
treatment of post-operative, congenital or post-traumatic loss of 
the subcutaneous fat layer, which can result in scar tissue  formation 

deformity, and a loss of function.1 Current clinical strategies for 
soft tissue augmentation primarily involve autologous, allogenic 
and alloplastic materials.1 Free fat transfer yields unsatisfactory 
and unpredictable results, with varying degrees of graft resorption 
due to a lack of supporting vasculature.2 Only small defects can be 
corrected with injected autologous fat, and even these limited appli-
cations require repeated treatments to maintain the desired volume.3 
Autologous tissue transfer using vascularized flaps that incorporate 
skin, fat and muscle, represents the gold standard treatment for 
large volume reconstruction.4 These techniques require considerable 
surgical skill, but can yield far superior results to those obtained with 
synthetic implants. However, there are high costs in terms of donor 
site morbidity and deformity, as well as hospitalization and surgical 
time. Alloplastic and allogenic materials can be associated with 
immune rejection, allergic reaction, implant migration or resorption, 
and a failure to integrate into the host tissues.1,5

To successfully engineer a soft tissue substitute, it is critical to 
understand the basic physiology of adipose tissue and the process of 
adipogenesis. As such, we begin with a brief description of the primary 
functions and cellular composition of fat, with an emphasis on the 
adipose-derived stem cell population. Following this, we outline 
some of the key events and mediators involved in adipogenesis.  
By understanding the cellular processes involved in fat formation, it 
is possible to more accurately characterize the cellular response within 
an engineered scaffold, facilitating the optimization of the construct 
properties to maximize regeneration. The results from some of the 
main adipose tissue engineering studies involving cells in scaffolds are 
highlighted, and a perspective for the future is provided.

Adipose Tissue

Adipose tissue is a dynamic and multi-functional tissue that is 
ubiquitous throughout the human body.6 Fat functions as a specialized 
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 pathways.37 Serum contains multiple factors, such as TNFa, growth 
hormone (GH) and epidermal growth factor (EGF), that inhibit 
lipogenesis.38,39 The differentiation of human ASC is strongly inhib-
ited in the presence of serum, potentially due to its strong mitogenic 
effect, which may promote cellular decommitment.40

The most common components in adipogenic medium formula-
tions include insulin, triiodothyronine (T3), and glucocorticoids.41,42 
Biotin and pantothenate are added to facilitate lipogenesis from 
glucose.37 Isobutylmethylxanthine (IBMX), a phosphodiesterase 
inhibitor that has a protective effect on cAMP, has been included 
in some formulations with positive results.42 Thiazolidinediones 
(TZD) including troglitazone and rosiglitazone, which are peroxi-
some proliferator-activated receptor-γ (PPARγ) ligands, have been 
shown to potently stimulate in vitro adipogenesis.43-45 PPARγ has 
been identified as a master regulator of adipogenic differentiation.46 
In general, the supplemented factors must be present at physiological 
concentrations or higher to have an effect.12

Transcriptional Control of Adipocyte Differentiation

The differentiation of human ASC involves a complex series of 
changes in the cellular gene and protein expression patterns.1,47  
In vitro differentiation is characterized by growth arrest, the induc-
tion and expression of multiple adipogenic genes (Fig. 1), and 
ultimately, triglyceride accumulation.48 Three groups of transcription 
factors have been identified as key regulators1 of adipocyte differen-
tiation: (1) PPARγ,49 (2) the CCAAT/enhancer binding proteins  
(C/EBP)50 and (3) adipocyte determination- and differentiation-
dependent factor-1/sterol regulatory element-binding protein-1 
(ADD-1/SREBP-1).51 Figure 2 highlights some of the interactions 
of these key factors. Detailed reviews of the transcriptional cascades 
can be found in the literature.52-55

Adipose Tissue Engineering

To date, a number of different constructs have been investigated 
for adipose tissue-engineering applications. The general strategy 

organ that maintains the energy balance through controlled storage 
and release. Adipocytes store energy in the form of triglycerides, 
and accumulate or mobilize triacylglycerol in response to the body’s 
energy requirements.7,8 Adipose tissue is highly plastic and can adapt 
to facilitate greater storage through the hypertrophic expansion of 
terminally-differentiated mature adipocytes, as well as the hyperplastic 
growth and differentiation of precursor cells present in the stroma.9,10

In addition to energy regulation, fat functions in maintaining 
normal body contours, providing mechanical protection, serving 
as a storage depot for cholesterol and steroid hormones, and is an 
important site of estrogen biosynthesis.11-14 Adipose tissue is also 
the source of multiple autocrine, paracrine and endocrine factors, 
many of which are involved in energy regulation and the modula-
tion of insulin sensitivity,15 including leptin,16 tumor necrosis 
factor-a (TNFa),17 plasminogen activator inhibitor-1 (PAI-1)18 
and adiponectin.19 However, the complement of secreted factors can 
induce a range of responses within multiple systems, including the 
reproductive, immunological and vascular systems.20

Cellular Composition of Adipose Tissue

Adipogenesis, the differentiation of precursor cells into mature, 
terminally-differentiated adipocytes, occurs throughout the human 
life cycle and is believed to be the primary cause of increases in 
body fat.21 Adipose tissue contains multipotent mesenchymal stem 
cells (MSC), which can differentiate in culture along the adipo-
genic, chondrogenic, myogenic, osteogenic and putative neurogenic 
lineages.22-26 The term “adipose-derived stem cell” (ASC) is used 
to refer to the collective population of MSC and more-committed 
adipose progenitors that are found within the stroma of adipose 
tissue. When induced to differentiate, ASC accumulate intracellular 
lipid, increasing in diameter up to 20 times, and ultimately forming 
the characteristic morphology of mature white adipocytes.7 Adipose 
tissue also contains fibroblasts, histiocytes and mast cells, as well as 
cells associated with the vascular and neural systems.13,27

Adipose-Derived Stem Cell Markers

ASC display a very similar immunophenotype to MSC isolated  
from bone marrow and skeletal muscle.28,29 Various studies have 
yielded differences in the detected expression patterns of some markers,  
potentially due to cell culture variations and/or donor variability.30 
A low percentage of ASC are positive for the multi-lineage marker  
STRO-1,31 and, at early passage, a subset express stem cell markers such 
as CD90 (Thy-1), CD34, ATP-binding cassette subfamily G member 
2 (ABCG2), and aldehyde dehydrogenase (ALDH).30 Preadipocyte 
factor-1 (Pref-1), a transmembrane protein that is believed to have a 
role in regulating differentiation, is an additional marker of the undif-
ferentiated cells.32-35 Endothelial markers can be detected in samples 
of freshly isolated stromal cells and early passage ASC. These markers 
include vascular endothelial growth factor receptor (Flk-1), CD31, 
CD144 and von Willebrand factor.30 Some additional proteins 
expressed by the ASC are highlighted in Table 1.

Adipogenic Factors and Differentiation

There appears to be an inverse relationship between ASC prolif-
eration and adipogenic differentiation.36 In vitro differentiation 
is associated with growth arrest and can be induced in serum-
free medium supplemented with cytokines that target adipogenic 

Table 1 ASC protein expression28,47,114

Cell adhesion molecules Integrin β1 (CD29)
 Integrin a4 (CD49d)
 Vascular cell adhesion molecule 
 (VCAM; CD106)
 Intracellular adhesion molecule-1 (CD54)
 Activated leukocyte cell adhesion molecule 
 (ALCAM; CD166)
Receptors Hyaluronate receptor (CD44)
 Transferrin receptor (CD71)
 Insulin receptor
 Glucocorticoid receptor
 Triiodothyronine (T3) receptor
 Retinoic acid receptor
Cytoskeletal proteins a-smooth muscle actin
 Vimentin
Other HLA-ABC (Major histocompatibility complex 
 class I antigen)
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involves seeding an extracellular matrix (ECM) substitute with cells 
capable of contributing to the regenerative response. These studies 
have shown the promise of soft tissue regeneration. Further research 
is required to understand the optimal characteristics to facilitate 
stable fat formation.

Cellular Component

Most tissue-engineering strategies involve preadipocyte cell lines 
or primary adipogenic stem cells. These approaches circumvent the 
limitations of mature adipocytes, which are large, fragile, and highly 
prone to ischemic cell death.56 Further, terminally-differentiated 
adipocytes do not proliferate in their mature form, thereby limiting 
their regenerative potential.9,10

Cell lines. The most investigated adipogenic cell lines are the 
3T3-L1, 3T3-F442a and Ob17 murine cell lines.57,58 Clonally 
derived cell lines are homogeneous, well defined, and can be cultured 
in vitro for extended time periods. Cell lines circumvent many of the 
problems associated with primary cells including tissue availability 
and donor variability.21,59 However, the primary cell response may 
be more representative of the true in vivo cellular behavior.12 There 
are significant differences in the hormonal requirements for differen-
tiation between cell lines and primary cells.60,61 In general, cell lines 
differentiate much more readily than primary cells, and can sponta-
neously convert into adipocytes in the presence of serum if growth 
arrest is maintained through confluence.62

Mesenchymal stem cells. Bone marrow (BM) is a source of MSC 
capable of adipogenic differentiation.63 However, BM procurement 
can be painful and the cell yield is often extremely low, with only a 
very small percentage (0.001–0.01%) of the cells having multilineage 
potential.64,65 The culture conditions must be carefully regulated, and 
serum selection and growth factor supplementation are commonly 
required to facilitate expansion.64 The differentiation capacity tends 
to decrease with increasing passage and time in culture.66

As discussed, adipose tissue is another possible MSC source for 
tissue engineering. Most patients are able to donate sufficient fat for 
cell isolation without any adverse effects.5,56,67 Using centrifugal 
separation and filtration techniques, up to 1 x 108 viable ASC can 
be isolated from processed tissues in the range of 100–500 mL.68 
ASC are more resistant to mechanical damage and ischemia than 
mature adipocytes.1,69 During lipogenesis, differentiating ASC 
synthesize new ECM and reorganize the matrix into the mature 
form found in fat.70 Hence, ASC may remodel tissue-engineered 
constructs to more closely resemble native adipose tissue ECM. 
ASC also secrete bioactive factors when differentiating that stimu-
late endothelial cell growth and motility in vitro and angiogenesis 
in vivo.71-73 In immunosuppressed rodents, injected ASC have 
been shown to hone to sites of injury, engraft and contribute to 
regeneration.63,65,74

It is important to note that cell isolation techniques and culture 
methods dramatically impact ASC proliferation and differentiation. 
While the cells can be expanded in culture for extended periods of 
time, they will senesce.75 The differentiation capacity also declines 
with increasing passage and freezing.36,40 Differences in differentia-
tion have been noted depending on the cell donor and the anatomic 
site of harvest.76 Cells harvested from younger donors generally 
have a greater potential to proliferate and differentiate than those 
harvested from older donors.41,42
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Figure 1. Overview of the differentiation of human ASC into mature adipo-
cytes. The detectable markers associated with the various stages of differen-
tiation are highlighted (LPL = lipoprotein lipase; a2Col6 = alpha 2 chain of 
collagen type VI; FAT = fatty acid translocase; FAS = fatty acid synthase; aP2 
= fatty acid binding protein; Glut4 = glucose transporter-4; GPDH = glycerol-
3-phosphate dehydrogenase; HSL = hormone sensitive lipase).

Figure 2. Transcriptional events in adipogenic differentiation. The diagram 
highlights the critical role of multiple transcription factors in adipogenesis. 
Arrows generally indicate a stimulatory interaction (with the exception of 
TNFa and leptin). After ligand binding with either endogenous ligands or 
TZD, PPARγ binds as a heterodimer with retinoid X receptor (RXR) to PPAR 
response elements (PPRE) in the transcriptional regulatory regions of the 
target genes. Insulin R., Insulin Receptor.
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indicated that the encapsulated cells expressed PPARγ. A later study 
confirmed that the cell-seeded PEGDA scaffolds facilitated adipose 
tissue formation and had excellent volume retention properties after 
4 weeks in vivo.83 More specifically, the scaffolds showed 100% 
volume retention as compared to 35–65% volume retention for 
collagen gels within the same system.

Polyethylene terephthalate scaffolds. The in vitro response of 
3T3-L1 cells seeded on non-degradable polyethylene terephthalate 
(PET) scaffolds was characterized by Kang et al.84 Oil red O staining 
showed high levels of intracellular lipid accumulation, with most of 
the cells having a mature morphology by 14 days after the induction 
of differentiation. RT-PCR analysis showed that the cells expressed 
multiple adipogenic markers including PPARγ, leptin, aP2 and 
Glut4. Similar to the results with the PGA scaffolds, the cells were 
shown to secrete higher levels of leptin in the three-dimensional scaf-
folds as compared to two-dimensional controls.

Naturally derived scaffolds. MatrigelTM. MatrigelTM is a commer-
cially available product that is derived from the reconstituted 
basement membrane of mouse sarcoma. This gelatinous material 
contains an undefined mixture of proteins, including collagen type 
IV, laminin and a variety of growth factors. MatrigelTM has been 
shown to support cell growth and has been used extensively to study 
cellular responses within a 3D environment. However, its clinical 
application is prohibited by its murine and tumorigenic origins.85

Kawaguchi et al.86 demonstrated de novo adipose tissue forma-
tion when MatrigelTM was subcutaneously injected with bFGF 
in nude mice. The material induced a strong neovascularization 
response within 1 week, followed by the recruitment and differen-
tiation of endogenous precursor cells. The fat pad was reported to 
have expanded for the first 3 weeks after implantation and retained 
its volume for the entire 10-week study. MatrigelTM and bFGF 
also supported in vivo adipogenesis in combination with seeded 
3T3-F442A cells.

MatrigelTM scaffolds containing bFGF were also investigated in 
vivo within a specialized silicone housing that isolated a pedicled 
blood supply by Walton et al.87 The authors noted significant 
adipogenesis and the maintenance of volume when both MatrigelTM 
and bFGF were implanted. Fibrovascular tissue growth and the 
formation of a fibrous capsule were also noted. A similar study was 
reported by Vashi et al.85 Collagen was used in place of MatrigelTM 
and FGF-2 was encapsulated in microspheres to facilitate long-term 
delivery. Histological results indicated that the collagen combined 
with FGF-2 microspheres could facilitate adipose tissue forma-
tion, although a fibrous capsule could be observed surrounding the 
implant.

Collagen scaffolds. Collagen scaffolds have been extensively 
studied as cell adhesive biomaterials for a variety of tissue engineering 
applications. Collagen has advantages in terms of availability, cost, 
biodegradability, and relative biocompatibility.88,89

Von Heimburg et al. seeded collagen scaffolds with human 
ASC and subcutaneously implanted them in nude mice for 3 and 
8 weeks.90 The implants were generally coated in a thin layer of 
adipose tissue that contained new blood vessels. Under histological 
analysis, adipose tissue formation and neovascularization of the 
outer layers of the construct were confirmed. A fibrous capsule was 
reported and there was a significant decrease in graft thickness and 
structural collapse with time.

Engineered Extracellular Matrices

A tissue-engineered adipose substitute should facilitate complete 
and predictable volume restoration.1 As mentioned, a common 
strategy is to incorporate a 3D scaffold that defines and maintains the 
desired tissue volume. The constructs must be easy to handle in the 
clinic and be readily modifiable to suit the individual needs of each 
patient.77 These ECM substitutes should facilitate normal cellular 
organization and behavior, promote regeneration, and restore func-
tionality.1 Materials should be selected that are capable of controlled, 
non-toxic degradation, as they are replaced by healthy host tissues. 
Some of the results to date for a variety of investigated scaffolds are 
reviewed below.

Synthetic scaffolds. Poly(lactic-co-glycolic) acid scaffolds. Patrick 
et al.78 designed poly(lactic-co-glycolic) acid (PLGA) scaffolds seeded 
with primary rat adipose precursor cells, harvested from epididymal 
fat pads. When implanted into the dorsa of rats, differentiated  
adipocytes could be detected within the constructs by 5 weeks. 
Longer term in vivo studies showed that the adipose tissue completely 
resorbed by 5 months, likely due to scaffold degradation.77

PLGA-polyethylene glycol (PLGA-PEG) microspheres were 
studied as drug delivery vehicles for insulin, insulin-like growth 
factor-1 (IGF-1), and basic fibroblast growth factor (bFGF) by 
Shenaq and Yuskel.79 In a subcutaneous rat model, incorporating the 
growth factors improved autologous free fat graft weight and volume, 
with the best results observed for either insulin or IGF-1 alone or 
in combination. A PLGA (75:25) foam was also assessed in vivo in 
combination with IGF-1 and insulin, with fibroelastic tissue forma-
tion at the implantation site at 12 weeks.

In another study evaluating the impact of bFGF, Neubauer  
et al.80 investigated rat BM MSC on PLGA scaffolds in vitro with 
or without the addition of bFGF. The investigation, which included 
measurements of GPDH activity and PPARγ and Glut4 gene expres-
sion, indicated that bFGF had a positive effect on adipogenesis.

Polyglycolic acid scaffolds. The cellular response of 3T3-L1 cells 
induced to differentiate in vitro on polyglycolic acid (PGA) scaf-
folds was investigated by Fischbach et al.81 Within the scaffolds, the 
cells readily accumulated lipid and assumed a mature, unilocular 
morphology by 35 days in culture. Interestingly, leptin secretion and 
laminin expression were augmented in comparison to traditional 
two-dimensional culture. When the constructs were subcutaneously 
implanted in nude mice, histological results showed the formation of 
mature fat pads surrounded by a fibrous capsule at 35 days.

Polytetrafluoroethylene scaffolds. The differentiation of human 
ASC on non-degradable polytetrafluoroethylene (PTFE) surgical 
mesh coated with collagen, albumin or fibronectin was examined by 
Kral and Crandall.67 While all of the coatings improved cell adhesion 
compared to the uncoated control, the highest seeding efficiency was 
observed with the fibronectin coating. Differentiation was induced, 
and some lipid accumulation was reported using SEM at 2 weeks 
after the induction of differentiation.

Poly(ethylene glycol)-diacrylate hydrogels. Alhadlaq  
et al.82 reported on the encapsulation of human BM MSC within 
poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. Differentiation 
was assessed at 4 weeks after seeding both in vitro and in vivo (subcu-
taneous athymic mouse model). In vivo, the scaffolds were shown 
to maintain their architecture and immunohistochemical staining 
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surrounding the implanted material. The RGD-modified material 
facilitated fibrovascular ingrowth from the surrounding tissues, 
which resulted in the fragmentation of the gel. Adipose tissue forma-
tion was not reported within any of the constructs.

Fibrin scaffolds. Injectable fibrin matrices containing human 
ASC and bFGF were investigated by Cho et al. in an athymic mouse 
model.98 The gel was injected within an implanted PGA fibre mesh 
dome, reinforced with poly(lactic acid) (PLA). This supporting 
structure preserved the original volume of the implant for a 6-week 
period. Oil Red O staining indicated that there was adipose tissue 
formation within the fibrin gel when the dome was used.

Borges et al.99 investigated the angiogenic potential of human 
ASC in fibrin glue in a chorioallantoic membrane model. The study 
indicated that the ASC were required to facilitate vascularization. 
Interestingly, the addition of vascular endothelial growth factor 
(VEGF) and bFGF to the medium did not influence the extent of 
vascularization.

Decellularized matrices. Our adipose tissue engineering research 
has focused on the investigation of naturally derived placental decel-
lular matrix (PDM) and cross-linked hyaluronan (XLHA) scaffolds 
for soft tissue augmentation. Our initial work involved the develop-
ment of a protocol to decellularize an intact, large segment of the 
human placenta.100 Following the finalization of the decellulariza-
tion protocol, the in vitro cellular response of primary human ASC 
to several different PDM and XLHA scaffolds was studied.101,102 
Cellular organization, viability, proliferation, and glucose consump-
tion were assessed during the proliferative phase prior to the 
induction of differentiation. The ASC differentiation response was 
characterized in terms of GPDH enzyme activity, intracellular lipid 
accumulation, and adipogenic gene expression using end-point 
(LPL, PPARγ, aP2, Glut4, leptin, GPDH) and real-time RT-PCR 
(PPARγ, GPDH). The cellular response was impacted by the scaffold 
environment and cell donor source. The cell-adhesive PDM scaffolds 
promoted ASC attachment, spreading and proliferation. In contrast, 
while all of the scaffolds could support the adipogenic differentiation 
of the ASC to some extent, differentiation was augmented when the 
cells were encapsulated in the non-cell-adhesive XLHA gels.

The PDM and PDM with XLHA scaffolds, seeded with primary 
human ASC, were also investigated in a subcutaneous athymic 
mouse model.103 The in vivo response at 3 and 8 weeks was char-
acterized using histological and immunohistochemical staining. 
The relative number of adipocytes within each implant was quanti-
fied. Undifferentiated ASC were localized using immunostaining 
for human vimentin. Unilocular and multilocular adipocytes were 
identified by Oil Red O staining and implant vascularization was 
assessed by staining for murine CD31. The 3D volume of the PDM 
and PDM with XLHA implants was qualitatively maintained over 
the course of the study. Mature adipocytes were detected within both 
types of scaffolds, generally in greater numbers at the 8-week time 
point. There were extensive numbers of adipocytes within a number 
of the implants, with the developing tissues closely resembling 
normal adipose tissue. Incorporating the XLHA appeared to have a 
positive effect on angiogenesis and adipogenesis.

Vascularization

To facilitate large volume soft tissue regeneration, it is impor-
tant to recognize that adipogenesis and angiogenesis are highly 

Gelatin microspheres containing bFGF were combined with 
human ASC and collagen sponges by Kimura et al. and the 
constructs were implanted in nude mice.91 Adipose tissue developed 
in the constructs within 6 weeks. All three components were required 
to induce the response, and the extent of adipose tissue formation 
was dependent on the number of seeded cells and the bFGF concen-
tration. It was hypothesized that the bFGF may have contributed to 
adipogenesis by promoting angiogenesis.

Gentleman et al.92 investigated collagen gels embedded with 
short collagen fibres to make the constructs more resistant to cellular 
contraction. The gels were seeded with 3T3-L1 cells. At 21 days 
after the induction of differentiation, the cells were shown to have 
accumulated intracellular lipid.

Glutaraldehyde cross-linked collagen-chitosan hydrogels for soft 
tissue augmentation were developed by Wu et al.93 The scaffolds 
were seeded with primary rat adipose precursors isolated from the 
epididymal fat pad. In vitro, the cells could be visualized on the 
scaffolds and were viable over a 10-day period. In a subcutaneous 
rat model, Oil Red O positive cells were present in the scaffold at 7 
and 14 days.

HYAFF® scaffolds. A group in the Department of Plastic and 
Reconstructive Surgery at the Aachen University of Technology has 
extensively studied biodegradable HYAFF® scaffolds for adipose 
tissue engineering applications. HYAFF® is a semi-synthetic mate-
rial that is a benzyl ester of hyaluronan (HA). In 2001, they 
investigated HYAFF® sponges, HYAFF® nonwoven carriers and 
freeze-dried collagen scaffolds, seeded with human ASC in a subcu-
taneous athymic mouse model.94 The results indicated that the 
strongest differentiation response was observed within the pores of 
the HYAFF® sponges. Histology showed the presence of clusters 
of differentiating cells within the sponges at 3 weeks. In contrast, 
a greater number of undifferentiated ASC were observed in the 
nonwoven carriers. In 2003, they investigated cellular adhesion of 
human ASC on HYAFF® scaffolds with varying degrees of esteri-
fication (i.e., hydrophobicity) and pore size.95 The results indicated 
that the greatest adhesion was observed with the scaffolds with 100% 
esterification and a mean pore size of 400 mm. Differentiation was 
observed when the scaffolds were maintained in adipogenic culture. 
In 2005, the group reported on a new 400 mm pore HYAFF® sponge 
with a different architecture.96 In addition, they investigated the 
effect of coating the scaffolds with HA to make the constructs more 
hydrophilic and allow greater infiltration of the aqueous cell suspen-
sion. The scaffolds were seeded with human ASC and implanted for 
3, 8 and 12 weeks in a subcutaneous athymic mouse model. The scaf-
folds showed improved cellular penetration and neovascularization 
as compared to the previously studied HYAFF® sponges. However, 
histological analysis indicated that there was only minimal adipose 
tissue formation within the constructs.

Alginate scaffolds. Marler et al.97 investigated injectable alginate 
scaffolds seeded with syngeneic fibroblasts in an inbred rat subcu-
taneous model. A modified form of alginate was developed that 
incorporated the cell-adhesive peptide arginine, glycine and aspartic 
acid (RGD). A greater loss of volume was reported in the unseeded 
RGD-modified scaffolds (25% volume retention at 8 weeks) as 
compared to the unmodified controls (58% volume retention at 8 
weeks). The addition of the fibroblasts improved the volume reten-
tion in both gels. In general, a fibrous capsule could be observed 
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adipogenic differentiation favored in MSC that were cultured with 
a rounded phenotype. In contrast, osteogenic differentiation was 
observed in culture conditions that promoted cellular attachment 
and spreading.113 These results could have implications on the 
success of cell-seeded scaffolds for adipose tissue engineering.

Overall, adipose tissue engineering is an exciting and emerging 
field. By building on the work conducted to date, the ultimate 
goal of predictable, long-term soft tissue regeneration for volume 
augmentation may be possible in the future.
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interconnected processes.104-106 Following implantation, tissue-
engineered adipose substitutes must rely on either revascularization 
or inosculation to become incorporated into the host vasculature.1 
Revascularization is limited by the slow kinetics of nutrient and waste 
diffusion. This process may be insufficient to support cellular survival 
in large or dense matrices.56 In such devices, it may be necessary to 
create a capillary network within the adipose substitute and subse-
quently fuse this engineered system with the host vasculature.107

Summary and Future Outlook

Adipose tissue engineering studies to date have shown that regen-
eration is possible using a cell-seeded scaffold approach. As discussed, 
many different types of scaffolds have been studied both in vitro and 
in vivo. Every scaffold has associated strengths and limitations, and 
the ideal environment for stable fat formation over the long-term 
remains unresolved.

While early research focused on qualitative histological assess-
ments, the application of cellular and molecular biology techniques 
is required to develop a more thorough understanding of the cellular 
behavior. Techniques such as end-point and real-time RT-PCR, flow 
cytometry, Western blotting and DNA and cytokine arrays, should 
be used to characterize the gene and protein expression patterns 
of cells seeded within the scaffold environments. By using these 
approaches, it may be possible to develop a better understanding of 
the scaffold properties that promote adipogenesis, thereby facilitating 
construct optimization.

Human ASC may represent an ideal cellular population for a 
range of tissue-engineering applications, including adipose tissue 
regeneration. As discussed, the investigation of primary human 
cells may provide more relevant data to facilitate the ultimate goal 
of clinical application. The ASC population includes multipotent 
mesenchymal stem cells capable of differentiation along multiple 
lineages.108,109 To date, most adipose tissue engineering studies 
involving cell-seeded scaffolds have focused solely on probing 
adipogenic markers. However, to understand the impact of the 
various scaffold environments on the cellular behavior, the key signal 
transduction pathways involved in the commitment process should 
be probed. MSC express factors from each of the lineages, which 
cross-regulate one another and maintain the undifferentiated state.54 
During differentiation, there is an increase in the key transcription 
factors from one specific lineage, combined with a repression of the 
controlling factors for the other lineages. It is recognized that cellular 
interactions with scaffolds can influence signal transduction.110 As 
such, it is likely that there are scaffold properties that would favor 
adipogenic differentiation of seeded MSC.

Our research has suggested a possible role for cell adhesion 
and shape in the modulation of adipogenic differentiation.101,102 
Primary adipocytes maintain their mature, unilocular phenotype 
when cultured in suspension. When promoted to adhere to a 
surface, the adipocytes spread and de-differentiate.111 Spiegelman 
and Ginty showed that adipogenic differentiation in the 3T3-F422A 
cell line was inhibited when strong cellular adhesion to fibronectin 
matrices was promoted, while disrupting the actin cytoskeleton and 
culturing the cells in a rounded state could restore the differentiation 
capacity.112 Cell shape was also shown to modulate human MSC 
differentiation through the RhoA-ROCK signalling pathway, with 
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