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OBSTRUCTIVE SLEEP APNEA (OSA) IS EXACERBAT-
ED BY THE SUPINE POSTURE IN THE MAJORITY OF 
PATIENTS AND APPROXIMATELY 60% OF PATIENTS 
have positional sleep apnea, defined as a supine apnea hypo-
pnea index (AHI) twice that observed when in the lateral re-
cumbent posture.1,2 Apnea severity (apnea duration, minimum 
oxygen desaturation, arousal length and frequency) is increased 
when supine.3 The optimal level of continuous positive airway 
pressure,4 and the critical closing pressure, an objective mea-
sure of airway collapsibility, are higher when a subject is su-
pine than when in the lateral recumbent posture.5,6 Similarly, 
the pressure required to reestablish airflow is higher in the su-
pine than in the lateral recumbent posture.7 In some individuals, 
merely avoiding the supine posture during sleep is sufficient to 
resolve sleep apnea.1

The mechanism responsible for the worsening of sleep dis-
ordered breathing in the supine posture is not clear but most 
likely relates to the effect of gravity on upper airway size or 
shape. Gravitational effects could act directly on the upper 
airway by displacing anterior pharyngeal structures and the 
pharynx,6 or indirectly by displacing the abdominal contents 
into the thorax and decreasing lung volume,8 and thereby de-
creasing the tension within the walls of the upper airway9 and 

increasing its susceptibility to collapse. In the lateral recum-
bent posture, these compressive gravitational effects are re-
duced.

It is commonly thought that these effects result in a smaller 
pharyngeal airway in the supine than in the lateral recumbent 
posture, making it more vulnerable to collapse.10 However, re-
ports are inconsistent in this regard, with some studies reporting 
the pharynx to be smaller in the supine than in the lateral re-
cumbent posture6,11,12 and others reporting a similar pharyngeal 
size in the 2 postures.13-15 It is possible that airway shape may 
also contribute to its propensity to collapse, as several studies 
have suggested that orientation of the elliptically shaped up-
per airway differs between individuals with and without OSA. 
Specifically, they suggest that in individuals with OSA, the long 
axis of the ellipse is oriented anteroposteriorally, making the 
lateral pharyngeal walls more susceptible to collapse, whereas 
in subjects without OSA, the long axis of the ellipse is oriented 
transversely.16-19 However, this observation has not been consis-
tent; numerous other studies report airway shape to be similar 
in apneics and non-apneic controls.14,20-26 The effect of posture 
on pharyngeal shape is unknown.

The aim of the current study was to address these questions 
by measuring upper airway shape and size, and the effect on 
them of change in body position, in awake individuals with and 
without OSA. We used anatomical optical coherence tomog-
raphy (aOCT), a quantitative imaging technique particularly 
suited to repeated measurements in the same individual.27-29
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MethoDs

subjects

Eleven male volunteers with a BMI < 30 kg/m2 were recruit-
ed from patients with recently diagnosed OSA (AHI > 10/h) on 
a laboratory-based polysomnogram.30,31 They were not selected 
on the basis of presence or absence of positional OSA (defined 
as supine AHI > 2 times lateral AHI and a total AHI of > 12.5/h, 
having slept ≥ 30 min in each posture).2,32 They had not pre-
viously received treatment for OSA, including upper airway 
surgery, and were otherwise healthy. Eleven healthy BMI- and 
age-matched male control subjects without a history of habitual 
snoring were recruited from local service clubs. OSA was ex-
cluded (AHI < 10/h) by a full night of laboratory-based poly-
somnography. The Human Research Ethics Committee of Sir 
Charles Gairdner Hospital approved the project, and informed 
written consent was obtained from all participants.

Protocol

Measurements of velopharyngeal and oropharyngeal shape 
and size were obtained in each subject using anatomical opti-
cal coherence tomography (aOCT).27-29 Briefly, aOCT requires 
a sealed, transparent catheter (3.0 mm outside diameter) to be 
inserted via the nares to mid-esophageal level. An optical probe 
is moved systematically within the catheter, which is fixed in po-
sition. The distance between the head of the optical probe and the 
air-tissue interface of the airway wall is determined from reflect-
ed light, using a low-coherence optical interferometer. A software 
program controls the longitudinal translation and rotation (1.25 
Hz) of the probe head, enabling collection of quantitative cross-
sectional images at regions of interest within the pharynx.

All aOCT scans were performed while the subject was awake; 
initially supine, then repeated in the lateral recumbent posture. 
Because head and body position have been shown to influ-
ence airway size,12 measurements were obtained with the head 
and neck in a controlled neutral posture. Specifically, when su-
pine, the head was supported with a Shea headrest (Gyrus ENT, 
Memphis, TN, USA) and a goniometer was used to position the 
Frankfort plane (line from infraorbital rim to tragus of the ear) 
perpendicular to the bed. When lateral recumbent, the body was 
perpendicular to the axis of the bed and the head supported with 
pillows and foam pads to eliminate rotation or lateral flexion/ex-
tension of the head and/or neck. A goniometer was used to align 
the Frankfort plane perpendicular to the long axis of the body. 
The subject was instructed to breathe quietly, not speak, and to 
maintain a constant head and tongue position during all scans.

Rib cage and abdominal motion were continuously moni-
tored at 1000Hz (Powerlab model 16s; ADInstruments, Syd-
ney, NSW, Australia) by respiratory inductance pneumography 
(Respitrace, Ambulatory Monitoring, Ardsley, NY, USA).

airway imaging

A “pullback” scan was performed in each subject, in each 
posture, by systematically retracting the aOCT probe from the 
upper esophagus to the nasal cavity at a constant speed (0.2 
mm/sec). Each pullback scan took between 9 and 12 min, dur-

ing which time approximately 900 images were obtained. Each 
image displayed airway cross-sectional dimensions for the pre-
vious 0.8 sec. Images were time-synchronized with the summed 
pneumography signal and reconstructed to provide a video with 
each frame providing a single quantitative cross-sectional im-
age of the pharynx.

Two regions of interest were defined from the reconstructed 
video: the oropharynx (tip of epiglottis to base of uvula); and 
the velopharynx (distal portion of the nasopharynx immediately 
proximal to the base of the uvula). The precise locations of the 
selected images within each region were determined a priori ac-
cording to the following: oropharyngeal cross-sectional images 
were obtained from the mid-oropharynx or, where the uvula 
was visible in the mid-oropharynx, just distal to the tip of the 
uvula; velopharyngeal cross-sectional images were obtained 
approximately 7 mm craniad to the base of the uvula.

analysis

Oropharyngeal and velopharyngeal images were selected 
by the same experienced investigator at the point of maximum 
and minimum cross-sectional area (CSA) during multiple suc-
cessive respiratory cycles. In instances where images from 3 
respiratory cycles were not available for analysis, 2 successive 
cycles or 1 cycle was used if, by inspection of the video, they 
were judged to be representative of that region. In instances 
where a complete airway profile was not visible, images were 
either excluded from analysis or, if at least 75% of the profile 
was visible, a straight line connected the visible portions of the 
airway. In cases where images for successive respiratory cycles 
at a given location were analyzed, each was performed inde-
pendently and mean values used for statistical analyses.

No assumptions were made as to the relationship between 
maximum and minimum CSA and phase of respiration; how-
ever, for all measurements, the phase of respiration in which 
maximum and minimum CSA occurred was documented.

Analyses of aOCT images were performed using ImageJ soft-
ware (National Institutes of Health, Bethesda, MD). For each 
image, the mucosa-lumen interface was manually traced by the 
same experienced investigator and airway CSA calculated. A-P 
diameter was calculated at the widest point in the parasagittal 
plane and lateral diameter was measured at the widest point in 
the coronal plane, perpendicular to the A-P diameter.14,17 The in-
traclass correlation coefficient for repeat measurements of air-
way CSA and diameters was 0.99 (P < 0.0001) and is reported 
in more detail elsewhere.28

statistical analysis

Student unpaired t-tests were used to compare anthropomet-
ric and polysomnographic measurements between control and 
OSA groups. Two-way repeated-measures ANOVA (SigmaStat, 
San Jose, CA, USA) was used to compare differences in region-
al pharyngeal dimensions and locations, at both maximum and 
minimum CSA, between OSA and control groups in the supine 
and lateral recumbent postures. A Holm-Sidak test was applied 
for all post hoc comparisons. Unless stated, all data are reported 
as mean ± SD. Significance was assumed at P < 0.05.
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results

Anthropometric and polysomnographic measurements in the 
11 OSA and 11 control subjects are presented in Table 1. The 2 
groups were well-matched for age and BMI. AHI ranged from 
15.0 to 76.8 events/h in the OSA group. In all OSA subjects, 
AHI was less in the lateral posture than in the supine. Seven 
OSA subjects met the criteria for positional sleep apnea.2,32 In 
all but one control subject, AHI was less in the lateral posture 
than in the supine. Although total AHI was < 10/h in the con-
trol subjects, 7 had a supine AHI greater than twice that in the 
lateral posture.

image location and analysis

In some individuals, at some sites, it was not possible to vi-
sualize the complete circumference of the airway. In the 22 sub-
jects examined in the present study, axial images with ≥ 75% 
of the airway circumference (including lateral extents) visible 
were obtained in 91% and 95% of scans performed in the su-
pine and lateral postures, respectively. Of the images analyzed, 
56% were complete profiles, with the remainder requiring mod-
est straight-line extrapolation to connect the visible portions of 
the airway profile with similar frequency of extrapolation in 
subjects with and without OSA.

The locations of velopharyngeal and oropharyngeal images 
relative to anatomical landmarks were similar in the OSA and 
control subjects and in the lateral and supine posture (ANOVA, 
P = 0.27). For example, velopharyngeal images in the supine 
posture were obtained 6.8 ± 1.4 and 6.4 ± 3.4 mm craniad to the 
base of the uvula in the OSA and control groups, respectively. 
Oropharyngeal images were 22.0 ± 4.8 and 17.2 ± 3.5 mm cau-
dad to the base of the uvula in the OSA and control groups, 
respectively.

effect of Posture on airway size and Dimensions

The effects of posture on wakeful velopharyngeal and 
oropharyngeal shape and size are shown in the images in Figure 
1. The tissue-air boundaries in each figure appear fuzzy because 
aOCT also detects subsurface reflections, but the interface be-
tween the airway and airway wall is sharp, allowing accurate 
surface location. Most notable features from these images are: 
(i) the smaller velopharynx in the individual with OSA than the 
matched control subject; and (ii) the marked effect of body pos-
ture on airway shape in both individuals in the velopharynx and 
oropharynx. These changes were representative of the group 
data, which are presented below.

cross-sectional area

osa vs control

Velopharyngeal maximum and minimum CSA were signifi-
cantly less in OSA subjects than in control subjects in supine 
(P < 0.05 and P < 0.01, respectively) but not lateral recumbent 
posture (P = 0.12 and 0.11, respectively) (Figure 2). Oropha-
ryngeal maximum and minimum CSA were similar in OSA and 
control groups for each posture (P > 0.2 for all comparisons).

Table 1—Anthropometric and Polysomnographic Measurements 
in OSA and Healthy Control Subjects

 OSA Control
 (n = 11) (n = 11)
Age (y) 56 ± 13 59 ± 9
BMI (kg/m2) 27.9 ± 1.0 25.9 ± 1.7
AHI (events/h) 39.6 ± 19.1* 3.3 ± 2.5
Supine AHI (events/h) 53.7 ± 22.2* 9.2 ± 9.2
NREM (events/h) 55.1 ± 23.4* 9.2 ± 9.2
REM (events/h) 52.9 ± 21.6* 4.1 ± 10.3
Lateral Recumbent AHI (events/h) 23.8 ± 21.6*† 1.0 ± 1.0†
NREM (events/h) 25.8 ± 22.0*† 0.5 ± 0.6†
REM (events/h) 38.0 ± 13.9*† 2.4 ± 2.8†

Values are mean ± SD. * P < 0.05 vs control; † P < 0.01 vs equiva-
lent when supine; BMI, body mass index; AHI, apnea hypopnea 
index.

Figure 1—Representative aOCT images of the velopharynx and 
oropharynx from one healthy control subject and one OSA subject 
in the supine and lateral recumbent postures. All scans were ob-
tained when the airway was at its minimum cross-sectional area 
during the respiratory cycle. The inner and outer walls of the imag-
ing catheter are visible within each airway. All images have been ro-
tated to align the anterior pharyngeal wall with the top of the page.

Figure 2—Maximum (closed symbols) and minimum (open sym-
bols) cross-sectional area (CSA) in the oropharynx (left panel) 
and velopharynx (right panel) in healthy control (circles) and 
OSA subjects (triangles) in the supine and lateral recumbent pos-
tures. n = 11 per group; mean ± SE; * significantly different from 
control group; P < 0.05.
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eter in either group when at maximum CSA (P > 0.2 for both) 
(Figure 3).

shape

The ratio of A-P to lateral diameter provides an index of the 
circularity of the airway, with a ratio of 1.0 representing a circle, 
a ratio <1.0 representing an ellipse with its long axis oriented 
laterally, and a ratio >1.0 representing an ellipse with its long 
axis oriented in the A-P dimension.

osa vs control

The shape of the airway changed minimally with respiration, 
as seen by the lack of change in this ratio between minimum 
and maximum CSA (Figure 4). The ratio at maximum and mini-
mum CSA was similar in the OSA and control groups in both 
the supine and lateral recumbent postures, indicating a similarly 
shaped airway in both groups in both body postures.

supine vs lateral

Except for the oropharynx of the OSA group at maximum 
CSA, this ratio was less than 1.0 and increased with change 
from the supine to lateral recumbent posture in both groups and 
in both pharyngeal regions, both at minimum and maximum 
CSA (P < 0.05 for all comparisons) (Figure 4). In the orophar-
ynx of the OSA group at maximum CSA, the ratio increased, 
but this change did not reach statistical significance (P = 0.10).

Discussion

The mechanism underlying aggravation of sleep disordered 
breathing in the supine posture remains to be defined, although 
gravity-related changes in pharyngeal dimensions have been 

supine vs lateral

Moving from the supine to lateral recumbent posture had 
no effect on velopharyngeal CSA (P > 0.2 for all comparisons) 
or oropharyngeal CSA (P > 0.3 for all comparisons) in either 
group (Figure 2). Maximum velopharyngeal CSA occurred dur-
ing expiration in 72% of control subjects and in 67% of OSA 
subjects, whereas maximum oropharyngeal CSA occurred dur-
ing expiration in 62% of controls and in 72% of OSA subjects 
(pooled data from both postures).

lateral Diameter

osa vs control

Velopharyngeal lateral diameter at minimum velopharyn-
geal CSA was less in OSA subjects than controls in supine (P < 
0.05), but not lateral recumbent posture (P > 0.4; Figure 3). Lat-
eral velopharyngeal diameter at maximum CSA was similar in 
both groups in both postures. Oropharyngeal lateral diameter 
was similar in OSA and in control subjects in both postures 
when measured at maximum and minimum CSA (Figure 3).

supine vs lateral

Moving from the supine to the lateral recumbent posture (i) 
decreased velopharyngeal lateral diameter at both maximum 
and minimum velopharyngeal CSA in control subjects (P < 0.01 
for both) but not in OSA subjects (P > 0.2 for both); and (ii) 
decreased oropharyngeal lateral diameter in control and OSA 
groups at both minimum and maximum CSA (P < 0.04 for all 
comparisons) (Figure 3).

anteroposterior (a-P) Diameter

osa vs control

There was a significant group and posture effect on velopha-
ryngeal A-P diameter at both maximum and minimum CSA. 
However, because of a large increase in A-P diameter in one 
control subject when moving from supine to lateral (10.7 to 
19.0 mm at maximum CSA) and the associated increase in vari-
ability, post hoc analyses did not identify the differences. When 
this subject was excluded from the analysis, it was revealed that 
velopharyngeal A-P diameter was smaller in OSA than control 
subjects in supine, but not in lateral recumbent posture when 
measured at maximum and minimum CSA (P < 0.05 for both) 
(Figure 3). Oropharyngeal A-P diameter was similar in OSA 
and control subjects in both postures when measured at maxi-
mum and minimum CSA.

supine vs lateral

Moving from the supine to lateral recumbent posture (i) 
increased the A-P diameter at both maximum and minimum 
CSA in the OSA and control subjects (P < 0.05 for all com-
parisons); and (ii) increased oropharyngeal A-P diameter in 
both the OSA and control groups (P < 0.05 for both) when 
at minimum CSA, but did not alter oropharyngeal A-P diam-

Figure 3—Lateral (upper) and anteroposterior (A-P) (lower) diam-
eter at maximum (closed symbols) and minimum (open symbols) 
cross-sectional area (CSA) in the oropharynx (left panel) and ve-
lopharynx (right panel) in healthy control (circles) and OSA sub-
jects (triangles) in the supine and lateral recumbent postures. n = 11 
per group; mean ± SE; * significantly different from control group; 
P < 0.05; †significantly different from supine posture; P < 0.05.
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nologies.33 Failure to obtain orthogonal images would introduce 
substantial error into assessments of size and shape.

Measurements obtained in the present study indicate a lack 
of posture influence on upper airway caliber. This finding is 
also in agreement with some,13-15 but not all,6,11,12 previous im-
aging studies. Two studies utilizing acoustic reflection found 
no difference in total airway volume or area at the level of the 
oropharyngeal junction between supine and lateral recumbent 
postures in non-snoring, snoring, and sleep apneic subjects dur-
ing wakefulness.13,15 Similarly, awake CT studies in positional 
and non-positional OSA patients showed no difference in mini-
mum or mean CSA of the entire airway between the supine and 
lateral recumbent postures.14 In contrast, Isono et al. used vid-
eoendoscopy to show that CSA was larger in the supine than 
lateral recumbent posture in anesthetized and paralyzed OSA 
patients at a range of static airway pressures.6 Magnetic reso-
nance imaging (MRI) studies in healthy sedated children11 and 
awake young adults12 have also shown decreased retroglossal 
airway volumes and CSA in supine than lateral recumbent pos-
ture. The reasons for the discrepancies between studies are not 
entirely clear, but may relate to differences in gender or age of 
study participants, conscious state, disease severity, or use of 
image gating with phase of respiration.

The findings of the present study provide several insights 
into the positional dependence of OSA. The combined effects 
of posture, gravity and upper airway anatomy can be consid-
ered in terms of the “bony enclosure’”model described by Isono 
et al.,6 which suggests that non-uniform distribution of soft tis-
sue around the pharyngeal airway may result in regional differ-
ences in the extraluminal forces acting on the airway (Figure 6). 
Based upon an airway with similar lateral and A-P dimensions 
in both postures (i.e., a circular airway), Isono’s model propos-

thought to play a major role. Although consideration has been 
given to posture-related changes in airway caliber, the effect of 
posture on pharyngeal shape has not previously been examined.

The present study utilized a novel imaging technique suit-
able for repetitive, quantitative imaging of the upper airway, 
aOCT, to demonstrate that moving from the supine to the 
lateral recumbent posture alters the shape, but not the size of 
the velopharyngeal and oropharyngeal airways in individuals 
with and without OSA. Specifically, the airway changes from a 
transversely oriented elliptical shape when supine to a more cir-
cular shape when in the lateral recumbent posture. This change 
in shape may be an important factor underlying the decreased 
propensity of the upper airway to collapse when in a lateral re-
cumbent posture. Laplace’s Law states that at equilibrium, the 
transmural pressure across a concave surface is directly propor-
tional to wall tension and inversely proportional to its radius 
of curvature. It follows that the transmural pressure gradient 
required to collapse the airway varies inversely with its radius 
of curvature. Hence, as the transverse elliptical airway assumes 
a more circular shape with change to the lateral posture, its pro-
pensity to collapse decreases as a function of the reduction in 
radius of curvature of its anterior and posterior walls. This pro-
pensity can be expressed dimensionally as proportional to the 
ratio of the lengths of the major and minor axes of the elliptical 
cross-section.

Our finding that, when supine, individuals with OSA and 
BMI- and age-matched control subjects have a similarly shaped 
airway (an ellipse with its long axis oriented laterally) in both 
the velopharyngeal and oropharyngeal regions contrasts with 
some,16-19 but not all14,20-26 previous reports of pharyngeal shape. 
The different findings could be attributable to a number of fac-
tors, including differences in location and orientation of images, 
variable head or neck flexion/extension,16 averaging of images 
over several breaths16 versus breath holding,18 or to the presence 
of adenotonsillar hypertrophy on the lateral airway walls.19 Our 
study addresses these potential confounding factors through 
careful matching of age and BMI in our all-male subjects; 
control of head posture; and the use of an imaging technique 
(aOCT) that produces quantitative, breath-by-breath images 
orthogonal to the airway wall. The accuracy of the orthogonal 
plane alignment is a central issue that has proved difficult to 
control with older computed tomography (CT) scanning tech-

Figure 4—Ratio of anteroposterior (A-P):lateral diameter at maxi-
mum (closed symbols) and minimum (open symbols) cross-section-
al area (CSA) in the oropharynx (left panel) and velopharynx (right 
panel) in healthy control (circles) and OSA subjects (triangles) in 
the supine and lateral recumbent postures. n = 11 per group; mean ± 
SE; † significantly different from supine posture; P < 0.05

Figure 5—Schematic representation of the compartmental tissue 
arrangement surrounding the pharyngeal airway when in the su-
pine and lateral recumbent postures. BE, bony enclosure; PA, pha-
ryngeal airway; A, anterior soft tissue mass; P, posterior soft tissue 
mass; L, lateral soft tissue mass. Note (i) the increased circularity 
of the airway in the lateral recumbent posture, (ii) greater radius 
of curvature of the anterior and posterior airway walls in the su-
pine posture, and (iii) the relatively greater mass on the anterior 
pharyngeal airway when supine (shaded region, A) than the mass 
on the lateral pharyngeal airway when lateral recumbent (shaded 
region, L). Modified from Isono’s bony enclosure model.6
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(aOCT) anatomical optical coherence tomography
CT computed tomography
MRI magnetic resonance imaging
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