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OBSTRUCTIVE SLEEP APNEA SYNDROME (OSAS) HAS 
BEEN SHOWN TO AGGREGATE SIGNIFICANTLY WITH-
IN FAMILIES.1-3 FAMILY STUDIES HAVE SUGGESTED 
that the risk of OSAS may be from 2- to 4-fold as great in rela-
tives of patients with OSAS than in controls,4 and that nearly 
40% of the variance in the apnea hypopnea index (AHI) of pa-
tients with OSAS may be explained by genetic factors.1 It is 
likely that genetic factors accompanied with craniofacial struc-
ture, body fat distribution and neural control of the upper air-
way muscles interact to produce the OSAS phenotype.5-7 How-
ever, the role of specific genes that influence the development 
of OSAS has not been identified.

Although several previous studies had presumed that several 
susceptible genes, such as angiotensin converting enzyme (ACE), 
ApoE4, and insulin receptor substrate (IRS) -1 might be involved in 
the pathogenesis of OSAS,8-10 the genetic markers for this disorder 
remain elusive. Several lines of pharmacological, neurobehavior-
al, and therapeutic evidence have implicated that serotonin (5-HT) 
is involved in the pathogenesis of OSAS.11-13 By regulating the 
magnitude and duration of serotonergic responses, the serotonin 

transporter (5-HTT) is central to the fine tuning of brain serotoner-
gic neurotransmission and of the peripheral actions of 5-HT.14 The 
5-HTT protein is encoded by a single gene, the solute carrier fam-
ily 6, member 4, SLC6A4 (i.e., 5-HTT), which locates on chro-
mosome 17q11.1-17q12.15,16 Two common polymorphisms have 
been described in the gene: a deletion /insertion of 44 bp in the 
promoter region approximately 1 kb upstream of the transcription 
site (5-HTTLPR) and a variable number of tandem repeats in in-
tron 2 (STin2.VNTR) containing 9,10, or 12 copies of a 16-17 bp 
repeat element located in intron 2.16-18 These polymorphisms make 
the 5-HTT a strong candidate gene for study in sleep disorders. In 
previous studies, the rat with 5-HTT gene knockout showed dis-
turbed sleep.19 Yılmaz et al. reported that the 12/10 and LL geno-
types were overrepresented in 20 male patients with OSAS.20 To 
further assess whether the 5-HTT gene could be implicated in the 
vulnerability to OSAS, we performed an independent case-control 
association study in a Chinese Han population.

SUBJECTS AND METHODS

Subjects

The study sample consisted of 254 patients with OSAS (220 
males and 34 females) diagnosed by using the overnight poly-
somnography (PSG). The patients who met the diagnostic cri-
teria of OSAS21 were recruited from the sleep laboratory of the 
Second Xiangya Hospital, Central South University (CSU) and 
Tongji Hospital, Tongji Medical College, Huazhong University 
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of Science and Technology (HUST), China. In OSAS patients, 
the mean age was 45.2 ± 11.8 y, the mean duration of com-
plaints was 6.5 ± 2.7 y; apnea / hypopnea index (AHI) was 53.9 
±16.4 events/h; body mass index (BMI) was 25.1 ± 6.5 kg/m2; 
educational level was 9.3 ± 3.4 y, respectively.

Three hundred and thirty-eight healthy control subjects (291 
males and 47 females) were screened for a personal or family 
history to exclude sleep disorders. The mean age was 43.2 ± 
12.7 y, the BMI was 22.6 ± 5.7 kg/m2, and the educational level 
was 10.9 ± 4.6 y, in healthy control group.

All subjects were unrelated Chinese Han individuals. Patients 
with OSAS and healthy control subjects were screened to exclude 
definite psychiatric disorders (Axis I disorders of the Diagnostic 
and Statistical Manual of Mental Disorders, DSM-IV) and taking 
psychotropic medication regularly. Those with illnesses in which 
a serotonergic mechanism has been implicated, such as migraine 
or irritable bowel syndrome, and those taking medications with 
known effects on the serotonin system (such as SSRIs drugs) 
were also excluded. The subjects with heart failure, chronic ob-
structive pulmonary disease, and/or recent cerebral apoplexy 
were also excluded. All subjects gave written informed consent 
and the protocol of our study had been approved by the Medical 
Ethics Committees of Central South University and Huazhong 
University of Science and Technology.

METHODS

Nocturnal pSG Measurements and Neuropsychological 
Examination

Each patient received overnight polysomnographic (PSG) 
examination. Nocturnal PSG measurement and analyses of 
sleep records were accomplished as we previously described.22 
The diagnosis of OSAS in the present study met the PSG diag-
nostic criterion of an AHI > 5 events/h. An apnea was defined 
as a complete cessation of airflow ≥ 10 sec. Hypopnea was de-
fined as a decrease in airflow of at least 50% with a concomitant 
fall ≥ 4% in arterial oxygen saturation followed by an arousal 
response (as indicated by α waves on EEG, increased submen-
tal electromyogram levels, or increased body movements). The 
AHI was calculated by dividing the total number of apnea and 
hypopnea episodes by the hours in sleep.

A total of 108 patients also received neuropsychological sta-
tus and cognitive examination, and a general questionnaire con-
cerning demographic data. The excessive daytime sleepiness 
(EDS) and psychological symptoms of OSAS patients were 
evaluated with the score of Epworth Sleepiness Scale (ESS) 
and general severity index (GSI) of the Symptom Checklist-90 
(SCL-90), respectively.22-24 Memory and executive function in 
patients were primarily assessed by memory quotient (MQ) of 
Wechsler Memory Scale—Chinese Revision (WMS-CR, stan-
dardized by Gong Yaoxian), and performance intelligent quo-
tient (PIQ) of Wechsler Adult Intelligent Scale—Chinese Revi-
sion (WAIS-CR, standardized by Gong Yaoxian).

plasma and gDNA preparation

Venous blood samples were obtained from all the subjects 
when they woke up in the morning. After the blood sample was 

centrifuged at 3000 rpm for 15 min, the supernatant plasma 
was extracted. Genomic DNA was isolated from the blood of 
experimental subjects as Smith et al. described.25 Plasma and 
gDNA samples were either used immediately or stored at -70 
°C until required.

Genotyping

The 2 polymorphisms (LPR and STin2.VNTR) of 5-HTT 
gene were genotyped according to Collier’s report.26 The prim-
ers sequences were as follows: 5’-GGC GTT GCC GCT CTG 
AAT TGC-3’ (sense) and 5’-GAG GGA CTG AGC TGG ACA 
ACC AC-3’ (antisense) for 5-HTTLPR, 5’-GTC AGT ATC 
ACA GGC TGC GAG-3’ (sense) and 5’-TGT TCC TAG TCT 
TAC GCC AGT G-3’ (antisense) for STin2.VNTR. The PCR 
amplification was performed in a 25 μL volume containing 
10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 200 
μM of each dNTP, 0.25 μM of each primer, 1U of Taq DNA 
polymerase and 40 ng genomic DNA. The conditions used for 
PCR amplification included an initial denaturation at 94°C for 
5 min, followed by 35 cycles at 94°C for 30 sec, 60-61°C for 30 
sec, 72°C for 40 sec, and a final elongation at 72°C for 7 min. 
PCR products of the 2 polymorphisms were separated on 6% 
non-denaturing polyacrylamide gels and bands visualized with 
silver nitrate (AgNO3) staining. The fragments sizes were 484 
base pairs (bp) (S allele) and 528 bp (L allele) for 5-HTTLPR, 
267 bp (allele 10-repeats) and 300 bp (12 repeats) for STin2.
VNTR, respectively.

Detection of plasma 5-HT and 5-HiAA levels

The plasma 5-HT and 5-hydroxyindolacetic acid (5-HIAA) 
levels were measured by using the high-performance liquid 
chromatography (HPLC) - electrochemical detecting (L-ECD-
6A) in 108 OSAS patients. The mobile phase was 20 mM sodi-
um citrate (adjusted pH 4.50) filtered by a 0.45 μM filter mem-
brane, with 5% (v/v) columbian spirit. The filtered and degassed 
mobile phase was delivered by a dual piston pump at a flow-rate 
of 0.7 mL/min. The separation was performed with a 150-mm 
long, 6-mm internal diameter Shim-pak CLC-phenyl column 
(Shimadzu, Japan). The column temperature was retained at 35 
°C and the voltage of the electrochemical detector was 0.75 V. 
The plasma 5-HT and 5-HIAA contents were identified by re-
tention times (28 min) and measured by the ratio of peak areas 
for the samples vs. standard solutions. 5-HT and 5-HIAA were 
prepared as 1 mg/mL stock solution in 0.1 M perchloric acid 
with 100 mM EDTA.27

Statistical Analyses

The genetic power estimates were performed with the Ge-
netic Power Calculator (http://pngu.mgh.harvard.edu/~purcell/
gpc/). Deviation of the genotype counts from the Hardy-Wein-
berg equilibrium was tested using a chi-square goodness-of-fit 
test. Statistical differences in genotypic, allelic, and haplotypic 
distribution between OSAS and control subjects were evaluated 
by the chi-square test. Odds ratio (OR) and their 95% confi-
dence intervals (95% CI) were calculated to evaluate the effects 
of different alleles. The pairwise linkage disequilibrium (LD) 
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analysis (using D’ value) was applied to detect the inter-marker 
relationship in control group. These analyses were performed 
by SHEsis (Bio-X Life Science Research Center, Shanghai, 
China), a powerful software platform for analyses of LD, hap-
lotype construction, and genetic association at polymorphism 
loci.28 The HAP - Haplotype Resolution: Version 3.0 (http://
research.calit2.net/hap/) was used for haplotype distribution in 
OSAS patients.29 The comparisons of demographic data, sleep 
characteristics, psychological status, and cognitive function 
across various groups were determined by t-tests or chi-square 
tests using SPSS 11.5. All tests were 2-tailed, and significance 
level was set at P < 0.05.

RESUlTS

Daytime Functions and Biochemical Status of OSAS patients

There were no differences in age, sex distribution, body mass 
index (BMI), or educational level between OSAS and healthy 
control groups (P > 0.05). Compared with healthy controls, 
OSAS patients suffered from striking daytime dysfunctions. 
The total ESS scores (16.04 ± 5.52 vs. 4.35 ± 3.62, P = 0.014), 
and the GSI of SCL-90 (0.91 ± 0.42 vs. 0.26 ± 0.11, P < 0.011) 
in OSAS group were significantly higher than those in healthy 

control group. However, the scores of memory quotient (MQ) 
(86.46 ± 13.51 vs. 101.90 ± 14.78, P = 0.002) in OSAS group 
was significantly lower than that in control group. No signifi-
cant difference was found in performance intelligence quotient 
(PIQ) of WAIS-CR between OSAS and controls groups (P > 
0.05). The plasma levels of 5-HT (168.51 ± 42.68 ng/mL vs. 
138.94 ± 36.60 ng/mL) and 5-HIAA (184.52 ± 54.19 ng/mL 
vs. 157.96 ± 60.30 ng/mL) in OSAS patients were significantly 
higher than those in healthy controls (P < 0.05) (Table 1).

Genetic Association Analyses

The size of our sample (254 OSAS patients and 338 healthy 
control subjects) was sufficient to detect a difference with a ge-
netic power of about 80.6% assuming an odds ratio (OR) of 2 
with a minor allele frequency (MAF) of 0.1. Genotype frequen-
cies above 2 polymorphisms (5-HTTLPR or STin2.VNTR) in 
either case or control groups were in Hardy-Weinberg equilib-
rium (P > 0.05), which suggested that the study sample came 
from a general population, without any effects of natural selec-
tion or migration.

No significant differences in allele distributions or genotype 
frequencies of 5-HTTLPR were found between patients and 
control subjects (P > 0.05). In contrast, significant differences 

Table 1—Comparison of Demographic, Daytime Functions, and Biochemical Index in OSAS Patients and Healthy Control Subjects

OSAS (n = 254) Controls (n = 338) t-value χ2 P-value
Sex: Male, n (%) 220 (86.6%) 291 (86.1%) - 0.033 0.856Female, n (%) 34 (13.4%) 47 (13.7%)
Age (y) 45.20 ± 11.84 43.19 ± 12.65 1.093 - 0.317
BMI (kg/m2) 25.12 ± 6.51 22.63 ± 5.73 1.304 - 0.178
Educational level (y) 9.32 ± 3.44 10.94 ± 4.61 0.911 - 0.347
ESS scoresa 16.04 ± 5.52 4.35 ± 3.62 2.378* - 0.014
GSI of SCL-90 a 0.91 ± 0.42 0.26 ± 0.11 2.653* - 0.011
MQ of WMS a 86.46 ± 13.51 101.90 ± 14.78 3.452* - 0.002
PIQ of WAIS a 93.27 ± 16.06 99.12 ± 18.85 1.815 - 0.056
Plasma 5-HT level (ng/ml) a 168.51 ± 42.68 138.94 ± 36.60  5.491** - <0.001
Plasma 5-HIAA level (ng/ml) a 184.52 ± 54.19 157.96 ± 60.30 4.360* - <0.001

ESS: Epworth Sleepiness Scale; GSI: General Severity Index; SCL-90: symptom checklist-90; MQ: memory quotient; WMS: Wechsler 
Memory Scale; PIQ: performance intelligent quotient; WAIS: Wechsler Adult Intelligent Scale; 5-HIAA: 5-hydroxyindolacetic acid. aN. case: 
108, N. control: 150; *P < 0.05; **P < 0.001.

Table 2—Genotype and Allele Frequencies and Association of 5-HTT Gene Polymorphisms in OSAS and Control Groups

Marker n  Genotype a  χ2 P-value HWE Allele a  Χ2 P-value Empirical OR
LPR  SS SL LL   P-value S L   P-value b (95%CI)
Total Cases 254 114(44.9) 106(41.7) 34(13.4) 2.906 0.233 0.241 334(65.7) 174(34.3) 3.115 0.077 0.259 1.25(0.97-1.59)
Total Controls 338 173(51.2) 131(38.8) 34(10.1)   0.217 477(70.6) 199(29.4)    
Male Cases 220 84(38.2) 106(48.2) 30(13.6) 10.417 0.005 0.706 303(65.6) 159(34.4) 7.541 0.006 0.007 1.44(1.11-1.87)
Male Controls 296 155(52.4) 113(38.2) 28(9.5)   0.269 456(73.3) 166(26.7)    
Stin2.VNTR  10/10 10/12 12/12    10 12    
Total Cases 254 6(2.4) 46(18.1) 202(79.5) 6.565 0.037 0.095 58(11.4) 450(88.6) 7.154 0.007 0.034 1.72(1.15-2.58)
Total Controls 338 3(0.9) 41(12.1) 294(87.0)   0.250 47(7.0) 629(93.0)    
Male Cases 220 4(1.8) 457(20.5) 171(77.7) 9.377 0.009 0.607 53(12.0) 387(88.0) 9.258 0.002 0.009 1.94(1.26~3.00)
Male Controls 296 3(1.0) 33(11.1) 260(87.8)   0.105 39(6.6) 553(93.4)    

aFrequencies (%) are shown in parenthesis. Significant P values (<0.05) are in boldface; bEmpirical P-values were generated after 10,000 
Monte Carlo simulations.
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90 (0.25 ± 0.10 vs. 0.88 ± 0.24, P < 0.05), and higher episodic 
memory score of the WMS (10.39 ± 2.62 vs.3.09 ± 1.70, P < 
0.05). However, no significant differences were found in exces-
sive daytime sleepiness (EDS), psychological status and other 
cognitive functions across different haplotype carriers (P > 
0.05) (Table 4).

As mentioned above,16,18,21 previous literatures have suggest-
ed that the 5-HTT polymorphisms might play a potential role 
in mood disorders in particular and the psychiatric symptoms 
might be common comorbidities in OSAS. To exclude the ef-
fects of 5-HTT polymorphisms on psychiatric comorbidities, 
we compared the 5-HTTLPR and STin2.VNTR allele frequen-
cies between patients with GSI > 2 (n = 63) and ones with GSI 
≤ 2 (n = 45) groups according to the SCL-90 scores. There were 
no significant difference in allele frequencies of above poly-
morphisms between GSI of SCL-90 > 2 and GSI ≤ 2 groups 
in OSAS patients (LPR: χ2 = 2.692, df = 1, P = 0.101; STin2.
VNTR: χ2 = 1.648, df = 1, P = 0.199). These results suggested 
that the effect of 5-HTT polymorphisms on OSAS might be in-
dependent of the psychiatric comorbidities.

DiSCUSSiON

Daytime Functions and Biochemical Status of OSAS

Previous literatures have reported that the OSAS might be 
associated with daytime dysfunctions.30,31 As we reported previ-
ously, the OSAS patients showed significantly more psychologi-
cal symptoms, such as somatization, obsession-compulsion, de-
pression, anxiety.22 In our sample, OSAS patients also showed 
significantly higher ESS and SCL-90 scores but lower memory 
quotients when compared with the healthy control subjects. 
These findings further support previous hypothesis that neurop-
sychological deficits in patients with OSAS.30,31

The neurobiochemical mechanism of OSAS has been long 
concerned for exploring the pathogenesis of OSAS. Serotonin, 
acting in the peripheral nervous system, can exacerbate sleep-
related apnea, and systemically administered serotonin antago-
nists reduce sleep disordered respiration in rats, bulldogs, and 
even in human beings.32-34 Our findings that the enhancement 
of plasma levels of serotonin (5-HT) and its metabolite, 5-hy-
droxyindolacetic acid (5HIAA), further suggested there might 
be hyperserotonergic neurotransmission in OSAS.

in frequency of genotypes and alleles were found in the STin2.
VNTR (Allele: 10>12, χ2 = 7.154, df = 1, P = 0.007, OR = 
1.72, 95% CI = 1.15 to 2.58; Genotype: χ2 = 6.565, df = 2, P = 
0.037) (Table 2). Pairwise linkage disequilibrium (LD) analysis 
between 5-HTTLPR and STin2.VNTR showed that 2 markers 
were in modest LD (D’ = 0.423). Two-locus haplotype analyses 
revealed that haplotype S-12 (P = 0.010, OR = 0.73, 95% CI = 
0.58 to 0.93) and haplotype L-10 (P = 0.040, OR = 1.82, 95% 
CI = 1.02 to 3.24) were associated with OSAS in the total group 
(global P-value was 0.020) (Table 3).

After gender stratification, significant differences were found 
between male OSAS patients and male controls in genotype 
and allele frequencies of both 5-HTTLPR (Allele: L>S, χ2 = 
7.541, df = 1, P = 0.006, OR = 1.44, 95% CI = 1.11 to 1.87; 
Genotype: χ2 = 10.417, df = 2, P = 0.005) and STin2.VNTR (Al-
lele: 10>12, χ2 = 9.258, df = 1, P = 0.002, OR = 1.94, 95% CI = 
1.26 to 3.00; Genotype: χ2 = 9.377, df = 2, P = 0.009) (Table 2). 
Furthermore, two haplotypes S-12 and L-10 also demonstrated 
significant evidence of association with OSAS in male group 
(S-12: P = 0.001, OR = 0.65, 95% CI = 0.50 to 0.84; L-10: P = 
0.0007, OR = 2.65, 95% CI = 1.48 to 4.75, respectively) (Table 
3). These results were still significant after 10,000 Monte Carlo 
simulations (Tables 2 and 3). Since the genotype frequencies 
of above 2 polymorphisms in female group showed significant 
deviations from Hardy-Weinberg equilibrium, we did not make 
analyses in female groups.

Comparisons of Clinical and Biochemical index among Different 
Haplotype Carriers

In 108 OSAS patients with daytime function data, there were 
91 male patients with OSAS, consisting of only 6 carriers and 
85 non-carriers of the haplotype L-10, 51 carriers and 40 non-
carriers for the haplotype S-12. Then we compared the differ-
ence in sleep characteristics, psychological status, cognitive 
function, and plasma 5-HT level between haplotype S-12 carri-
ers and non-carriers in male OSAS patients.

Compared with non-carriers, patients carrying haplotype S-12 
showed a significantly lower plasma 5-HT (143.64 ± 21.33 ng/
mL vs. 185.47 ± 29.10 ng/mL, P < 0.001) and 5-HIAA (161.07 
± 32.16 ng/mL vs. 197.57 ± 39.07 ng/mL, P < 0.001) levels, 
and apnea / hypopnea index (AHI) (48.56 ± 19.43 events/h vs. 
63.23 ± 20.30 events/h, P < 0.05), depressive factor of the SCL-

Table 3—Haplotype Frequencies Estimation and Comparison of 5-HTT Gene Polymorphisms in OSAS and Control Groups

Group Haplotype Haplotype frequency χ2 P-value Empirical Odds ratio Global
  Cases Controls   P-value b (95% CI) χ2 P-value
Total S-10 27.90(5.5) 23.97(3.5) 2.766 0.096 0.267 1.57 (0.92 to 2.69) 9.798 0.020
 S-12 306.10(60.3) 456.03(67.5) 6.562 0.010 0.034 0.73 (0.58 to 0.93)  
 L-10 30.10(5.9) 23.03(3.4) 4.185 0.040 0.078 1.82 (1.02 to 3.24)  
 L-12 143.90(28.3) 172.97(25.7) 1.110 0.292 0.750 1.15 (0.89 to 1.49)  
Male S-10 18.92(4.3) 20.83(3.5) 0.416 0.518 0.724 1.23 (0.65 to 2.33) 17.104 0.0006
 S-12 255.08(58.0) 402.17(67.9) 10.830  0.001 0.002 0.65(0.50 to 0.84)  
 L-10 34.08(7.7) 18.17(3.1) 11.484  0.0007 0.0009 2.65(1.48 to 4.75)  
 L-12 131.92(30.0) 150.83(25.5) 2.574 0.108 0.251 1.25 (0.95 to 1.65)  

aFrequencies are shown in parenthesis. bEmpirical P-values were generated after 10,000 Monte Carlo simulations.
Significant P values (<0.05) are in boldface.
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showed significant differences between male patients and male 
controls (P = 0.006, OR = 1.44, 95% CI = 1.11 to 1.87). Hap-
lotype analysis is a powerful strategy that markedly increased 
data significance compared to single-locus analysis. In this study, 
2 haplotypes (S-12 and L-10) constructed of 5-HTTLPR and 
STin2.VNTR provided convergent evidence for a significant role 
of the 5-HTT gene in the genetic predisposition to OSAS, espe-
cially in a subgroup of male subjects (global P-values were 0.020 
for total sample and 0.0006 for male subjects, respectively). Our 
data further provided evidence implicating the 5-HTT gene itself 
might play a role in the pathogenesis of OSAS, especially with 
gender effect. As we all known, the prevalence of OSAS is much 
higher in male than in female (2-4:1). Therefore the stratifica-
tion of sex in our sample might further help to investigate the 
association of OSAS with 5-HTT gene polymorphisms. On the 
other hand, our findings just support suggestive association be-
tween 5-HTT polymorphisms and OSAS, considering the limited 
power of our sample size (254 OSAS patients and 338 healthy 
controls) with a MAF<0.10 for Stin2.10 in controls and a much 
lower OR of 1.44 for LPR in male subjects. These preliminary 
results should be further verified or replicated in another samples 
to exclude the possibility of false positive association.

Yilmaz et al. ever reported that the 12/10 and LL genotypes 
were over-represented in the male patients compared with male 
controls.20 Interestingly, there are significant ethnic differences 
between European-American and Chinese Han populations in 
genotype or allele frequencies of 5-HTTLPR and STin2.VNTR 
in the 5-HTT gene.41 Weese-Mayer et al. also have reported the 
racial differences in their research of association of 5-HTT and 
sudden infant death syndrome (SIDS).42 And the genotype and 
allele distributions in the sample of Yilmaz were similar to those 
of European-American population. However, the potential risk 
allele susceptibility to OSAS in our Chinese Han sample were 
the same as those in the sample of Yılmaz. These convergent 
findings further support the potential implications of 5-HTT in 
the pathogenesis of OSAS.

Association Analyses of OSAS with 5-HTT Gene polymorphisms

Dysfunction of the serotoninergic system has long been 
suspected to be involved in sleep disorders and respiration 
diseases.13,20,35-37 Serotonergic fibers broadly innervate the thala-
mus and may influence the sleep wake cycle, attention, and other 
processes through modulation of neurons in this structure.38 New 
findings in past few years also have brought significant insight 
into the neural mechanisms governing upper airway dilator mus-
cle function and provided on neurobiochemical mechanisms, 
emphasizing a role for serotonergic mechanism for OSAS.

Synaptic serotonin is inactivated by presynaptic reuptake, 
which is mediated by the serotonin transporter (5-HTT). Two 
polymorphisms, 5-HTTLPR (5-HTT gene-linked polymor-
phic region) and VNTR (variable number tandem repeats of 
17 bp sequence in the second intron and has several alleles), 
have been frequently described in several disease models. The 
function of VNTR is thought to affect enhancer function and 
thus transcription of the gene.39 5-HTTLPR is a deletion inser-
tion polymorphism located at the 5’-flanking regulatory region 
of the 5-HTT and creates short (S) and long (L) alleles. The 
reuptake of serotonin in cells homozygous for the L form (or 
L/L) of the promoter polymorphism was found to be 1.9 to 2.2 
times as great as that in cells carrying one or two endogenous 
copies of the S (or S/L, or S/S) allele. That is, the presence of 
S allele is associated with decreased 5-HT reuptake, which, in 
turn, results in longer serotonergic activity and corresponds to 
low serotonin uptake activity. 40 Based on above evidence, we 
hypothesized that the 5-HTT gene variations may implicate in 
determining the susceptibility to OSAS and then investigate the 
association of 5-HTT gene with OSAS.

In the present study, we found that the allele 10-repeat of the 
STin2.VNTR was associated with OSAS in both total (P = 0.007, 
OR = 1.72, 95% CI = 1.15 to 2.58) and male subjects (P = 0.002, 
OR = 1.94, 95% CI = 1.26 to 3.00). Although the 5-HTTLPR did 
not show susceptibility to OSAS in total subjects, the L allele 

Table 4—Comparisons of Nocturnal PSG, Daytime Functions and Biochemical Index in Haplotype S-12 Carriers and Non-Carriers 
(mean ± SD)

 S-12 carriers (n = 51) Non-S-12 carriers (n = 40) t-value  P-value
(S1+S2) %

# 67.87 ± 29.13 70.02 ± 28.32 0.968 0.340
SWS %# 12.47 ± 4.21 16.59 ± 5.03 1.087 0.234
REM %# 19.23 ± 7.21 13.42 ± 7.24 1.292 0.172
Arousals 8.93 ± 3.28 11.57 ± 6.46 0.875 0.482
AHI (events/h) 48.56 ± 19.43 63.23 ± 20.30 2.437* 0.020
Min SaO2 (%) 72.22 ± 12.54 69.07 ± 14.89 0.926 0.356
ESS scores 10.01 ± 3.47 13.04 ± 5.52 1.378 0.170
GSI of SCL-90 0.54 ± 0.19 0.97 ± 0.41 0.499 0.629
Depressive factor of SCL-90 0.25 ± 0.10 0.88 ± 0.24 2.960* 0.007
MQ of WMS 81.16 ± 16.98 89.90 ± 15.66 1.426 0.155
Episodic memory of WMS 10.39 ± 2.62 3.09 ± 1.70 2.685* 0.008
PIQ of WAIS 86.13 ± 15.24 91.85 ± 17.62 1.815 0.212
Plasma 5-HT level (ng/mL) 143.64 ± 21.33 185.47 ± 29.10 8.019** <0.001
Plasma 5-HIAA level (ng/mL) 161.07 ± 32.16 197.57 ± 39.07 7.543** <0.001

#Values for sleep stages are expressed as a percentage of sleep period time; SWS: slow wave sleep; Arousals: frequencies of brief arousals 
from sleep; AHI: apnea / hypopnea index; Min SaO2: minimum oxygen saturation; ESS: Epworth Sleepiness Scale; GSI: General Severity 
Index; SCL-90: symptom checklist-90; MQ: memory quotient; WMS: Wechsler Memory Scale; PIQ: performance intelligent quotient; WAIS: 
Wechsler Adult Intelligent Scale; 5-HIAA: 5-hydroxyindolacetic acid. *P < 0.05; **P < 0.001.
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within the male patients. Compared with non-S-12 carriers, 
OSAS patients with haplotype S-12 constructed by two above 
polymorphisms might play a potential role for OSAS and clini-
cal characteristics. Due to the potential limitations of sample 
size and population stratification, the case-control study may 
lead to false-positive findings. Therefore, genotype analysis of 
more markers in 5-HTT and replication of this finding in large 
independent samples and family-based association studies will 
be required to further strengthen that 5-HTT gene plays a role in 
genetic susceptibility to OSAS.
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