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The perfect-plasticity approximation (PPA) is an analytically trac-
table model of forest dynamics, defined in terms of parameters for
individual trees, including allometry, growth, and mortality. We
estimated these parameters for the eight most common species on
each of four soil types in the US Lake states (Michigan, Wisconsin,
and Minnesota) by using short-term (<15-year) inventory data
from individual trees. We implemented 100-year PPA simulations
given these parameters and compared these predictions to chro-
nosequences of stand development. Predictions for the timing and
magnitude of basal area dynamics and ecological succession on
each soil were accurate, and predictions for the diameter distribu-
tion of 100-year-old stands were correct in form and slope. For a
given species, the PPA provides analytical metrics for early-succes-
sional performance (H20, height of a 20-year-old open-grown tree)
and late-successional performance (Ẑ*, equilibrium canopy height
in monoculture). These metrics predicted which species were early
or late successional on each soil type. Decomposing Ẑ* showed that
(i) succession is driven both by superior understory performance
and superior canopy performance of late-successional species, and
(ii) performance differences primarily reflect differences in mor-
tality rather than growth. The predicted late-successional domi-
nants matched chronosequences on xeromesic (Quercus rubra) and
mesic (codominance by Acer rubrum and Acer saccharum) soil. On
hydromesic and hydric soils, the literature reports that the current
dominant species in old stands (Thuja occidentalis) is now failing to
regenerate. Consistent with this, the PPA predicted that, on these
soils, stands are now succeeding to dominance by other late-
successional species (e.g., Fraxinus nigra, A. rubrum).

climate change � community ecology � SORTIE � TASS � trade-offs

There is an urgent need to develop a predictive understanding
of the carbon and ecological dynamics of natural and semi-

natural forests (1). Forests harbor approximately two thirds of
terrestrial biodiversity (2) and half of terrestrial carbon (3), but
we currently know little about how the biology and demography
of trees lead to regional and global patterns in the biomass,
structure, and species composition of forests (4). This problem
limits our ability to predict how, and how quickly, forests, and
hence the Earth’s climate system, might respond to climate
change (5). In part, this problem reflects the lack of consensus
on a conceptual and modeling framework for forest dynamics
(6). At local scales, complex, spatially explicit, individual-based
simulation models (hereafter referred to as virtual forest mod-
els) have been developed that successfully reproduce observed
dynamics. For example, forest gap models [JABOWA-FORET
(7, 8) and its derivatives (9, 10)] have reproduced the species
composition of old-growth, seminatural forests and are widely
used to guide forest management (11–13). Also, the tree and
stand simulator (TASS) model and its derivatives (14, 15) can
accurately predict the dynamics of size distributions and wood
volume and, hence, carbon in even-aged plantation monocul-
tures. However, the complexity of virtual forest models means
that they cannot readily be scaled up to address regional and
global questions, both because they require detailed data that are
rarely available [e.g., light interception, crown transmissivity,

seed-dispersal kernels (9, 16)] and because they are computa-
tionally demanding to simulate (6, 17). The complexity of virtual
forest models also renders them mathematically intractable,
which limits the level of understanding that can be extracted
from them.

We recently developed a simple model of the dynamics of a
forest stand, the perfect-plasticity approximation (PPA), which
simultaneously predicts the dynamics of biomass, stand structure
(e.g., tree-size distributions), and ecological succession (e.g.,
species compositional changes after disturbance). Unlike virtual
forest models, the PPA can be parameterized from forest
inventory data, is simple enough to simulate at broad geographic
scales, and is mathematically tractable (18–20). The purpose of
the work presented here was to assess whether the PPA can
predict the dynamics of real forest communities.

Fig. 1 shows PPA predictions for the 100-year dynamics of
forest stands on four different soil types (in order of increasing
soil moisture: xeromesic, mesic, hydromesic, and hydric) in the
US Lake states (Michigan, Wisconsin, and Minnesota). For each
soil type, we estimated PPA parameters for each of the most
common eight species by using forest inventory data. We then
initialized the model by using inventory data from young (i.e.,
recently disturbed) forest stands and ran an ensemble of model
simulations to provide predictions for dynamics over 100 years.
Finally, we compared these model predictions with observed
100-year chronosequences [supporting information (SI) Appen-
dix, Appendices 1 and 2]. Crucially, the PPA parameters are
defined at the level of the individual tree and, thus, were
estimated by using only individual-level, short-term data (c.
12-year growth and survival from inventory plots remeasured in
the 1990s, and allometry from additional inventories; see Table
S1), whereas predictions were evaluated against long-term,
stand-level data. The PPA parameters were not adjusted to
reproduce the stand-level data (Table S2). Thus, the comparison
of predictions vs. observations shown in Fig. 1 is an independent
test of the model’s ability to predict long-term, community-scale
dynamics from short-term, individual-scale observations. How-
ever, it is also important to note that chronosequences are
generated from a single survey by comparing stands of different
ages. Therefore, a match between predictions and observations
would be expected only if the processes driving forest dynamics
have remained close to constant during the period in which the
chronosequences were formed (21).

As Fig. 1 shows, the PPA is able to predict the 100-year
dynamics of basal area (an index of carbon storage) recorded in
the chronosequences (Fig. 1 Top), predicting the basal area of
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the oldest plots to within a few percent on each soil type. The
model also predicts the principal differences among soils in
the timing of succession (Fig. S1). Also, the predicted slope of
the size distribution in 100-year-old stands was roughly correct
on all four soils (Fig. S1). Nonetheless, there were some mis-
matches between predictions and observations. For example, on
most soils, the model did not predict the magnitude of the initial
peak in abundance of the early-successional species (Fig. S1).
Also, on three of the four soils, the predicted size distributions
had fewer intermediate-sized trees than observed (Fig. S1).

The PPA Model
The PPA works, despite being so simple, because it retains the
most important process determining forest dynamics—height-
structured competition for light—while discarding most of the
other details included in virtual forest models. Height-structured
competition is widely acknowledged as the most fundamental
process driving forest dynamics (e.g., see refs. 5 and 22), is central
to virtual forest models (9, 15), and is responsible for the growth
form of trees. To create the PPA (19), we began with the virtual
forest model SORTIE, which tracks the growth, fecundity, and
death of thousands of individual trees i with explicit locations (9).

The growth and mortality of tree i depend on how much light it
intercepts, calculated by using a 3D light-tracing algorithm that
accounts for the geometry and crown transmissivity of the trees
around i. The offspring of i are distributed around i according to
a spatially explicit dispersal kernel.

SORTIE unrealistically assumes that a tree’s crown is a rigid
3D structure determined entirely by species identity and stem
diameter and, therefore, is completely unresponsive to neigh-
boring trees. The first step to creating the PPA from SORTIE
was to replace this assumption of perfect rigidity with the
assumption of perfect plasticity. According to perfect plasticity,
each tree can place its crown area anywhere in the horizontal
plane (19), altering its crown shape or even breaking its crown
into discontinuous fragments. The assumption is spatially im-
plicit, so the placement of the parcels of crown is not specified.
Perfect plasticity assumes only that the parcels are arranged to
minimize overlap with other crowns and that the total area of
each crown is preserved.

Despite being a theoretical limit that can never be met fully in
reality, perfect plasticity seems to be a useful assumption for
modeling forest dynamics. First, the PPA model provides an
accurate approximation to the dynamics of SORTIE when
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Fig. 1. Comparison of PPA model predictions with observations on four soil types in the US Lake states. The model was parameterized by using short-term forest
inventory data on individual trees. Parameters were not adjusted to match model predictions to the observations shown here. (Top) Predicted total stand basal
area compared with chronosequences created by comparing stands of different ages (time since disturbance). To propagate parameter uncertainty, the model
was simulated 50 times with parameter sets drawn randomly from their joint posterior distribution; the model predictions show the mean and the upper and
lower 68% bounds from these 50 simulations (see also Fig. S1). (Middle) Analytical metrics of performance for the early-successional (H20) and late-successional
(Ẑ*) niche for each species compared with observations of successional status (black, gray, and open symbols: see legend). The error bars show the upper and
lower 68% bounds from error propagation (see also Fig. S2). (Bottom) Predicted vs. observed species composition of 100-year-old stands. The observed species
composition of young stands (�15 years since disturbance), which was used to initialize the PPA, is also shown. The error bars show the upper and lower 68%
bounds from the 50 simulations (see also Fig. S3).
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SORTIE is modified to include a realistic level of crown plas-
ticity (19). Second, we found that a perfect-plasticity canopy
model accurately reproduced the observed species and size
dependencies of crown radius, crown depth, and canopy status
(understory vs. canopy) in US forests (18). Together, these
results suggest that the deviations from perfect plasticity that
occur in reality are, to a first approximation, not critical to
either canopy structure or the development of stands. However,
it is important to note that the perfect-plasticity assumption is
only tenable within a stand, where trees experience a relatively
homogeneous physical environment and relatively similar
neighborhoods.

To understand the implications of perfect plasticity, consider
the case in which the total crown area in a stand is between one
and two times the ground area, as is typically the case in mid- to
late-successional temperate forests (results not shown). In this
case, perfect plasticity implies that all crown area above a critical
height Z* receives full sunlight and that all other crown area is
in the understory. The height Z* needs to satisfy the logical
condition that the total sun-exposed crown area is less than or
equal to the ground area. Thus, Z* depends in a simple way on
the height and crown geometry of the trees in the stand (18, 19).

Perfect plasticity makes each individual’s fate independent of
its spatial location and, thus, removes any effects of spatially
explicit processes including seed dispersal and understory het-
erogeneity in light. Thus, individuals of the same species and size
have the same expected fate (no trees become ‘‘lucky’’ or
‘‘unlucky’’ as a result of their spatial position), which enables the
individual-based model to be recast as a demographic model
(19), tracking the fate of cohorts rather than individuals. The
definition of a cohort is a group of trees with identical properties
(e.g., species, size, demographic rates) and an associated spatial
density (number per unit area). The use of demography makes
simulations orders of magnitude faster and mathematical anal-
ysis possible (19, 20). However, it still allows for a great deal of
freedom in the functions controlling the biology of trees (i.e.,
growth, mortality, fecundity, and allometry and how they depend
on tree size, age, and light availability).

The results in this article are from a special case of the PPA
that makes very simple assumptions. We make tree crowns
flat-topped, with area equal to a circle with radius proportional
to an individual’s diameter at breast height (dbh); i.e., crown
area � �(�jdbh)2 for a tree of species j. The flat-top assumption
means that an individual’s crown is either completely sun-
exposed (if the tree is taller than Z*) or completely shaded
(shorter than Z*). We assume a power law for height allometry
(i.e., height � �jdbh�j). We allow a pair of size- and age-
independent dbh-growth rates (cm yr�1) for individuals in the
canopy (GL,j) and understory (GD, j) and an analogous pair of
annual mortality rates (�L, j and �D,j), thereby avoiding any
explicit consideration of light. We assign a species-independent
fecundity parameter F (new recruits per unit sun-exposed crown
area per unit time), and within each soil type we disregard
random tree-to-tree, plot-to-plot, and/or year-to-year variation
in parameters, making growth, mortality, allometry, and fecun-
dity entirely deterministic.

The simplicity of this version of the PPA is illustrated by the
following algorithm, which implements its dynamics over 1 year
(see SI Appendix, Appendix 1, and Table S3 for details):

1. calculate Z*;
2. implement mortality:

w(i)3 (1��L,j)w(i) if height of cohort i �Z* [1]

(1��D,j)w(i) if height of cohort i �Z* [2]

3. implement growth:

dbhi3 dbhi � GL,j if height of cohort of i �Z* [3]

dbhi � GD,j if height of cohort of i �Z* [4]

4. create one new cohort i for each species j in the stand, with
dbhi � 0 and w(i) proportional to the total exposed crown
area of species j,

where w(i) is the spatial density of cohort i (trees ha�1), dbhi is
the diameter at breast height of the trees in cohort i, and the
subscripts j refer to the species identity of particular cohorts.
Iterating steps 1–4 predicts the dynamics of the stand.

Analytical Predictions for Succession
The special case of the PPA considered here is of special interest,
because important features of its dynamics are analytically
tractable (19, 20). For example, in the absence of stand-replacing
disturbance, the eventual winner in interspecific competition
(i.e., the late-successional dominant) is the species j with the
greatest value of Ẑj

* [canopy closure height in an equilibrium
monoculture (19, 20)]:

Ẑ*i � �i[GD,j / �D,j]� j [ln(2�� j
2 FGL,j

2 �L,j
�3)]� j, [5]

where Ẑ*j is in meters. Also, the species with the largest share of
the canopy at the time of canopy closure (i.e., the early-
successional dominant) is the species with the fastest height
growth rate, assuming (i) equal, and realistically high, initial
densities of size-zero individuals of all species and (ii) realisti-
cally small interspecific differences in �L and �. In this region we
estimate that canopy closure occurs �20 years after stand-
replacing disturbance on all soil types (results not shown). Thus,
as a measure of competitive ability for the early-successional
niche, we use the height of a 20-year-old open-grown tree:
H20,j � �j(20GL,j)�j.

To test the predictive ability of these metrics, we calculated Ẑj
*

and H20,j for each species on each soil type and compared them
to the observed successional status (early or late) of each species,
calculated from the observed correlation of basal area vs. stand
age in the chronosequences (see SI Appendix, Appendix 1). Note
that Ẑ*j and H20,j were calculated directly from individual-level
parameters without the need for model simulations.

In most cases, these metrics correctly predicted which species
were early- or late-successional on each soil type (Fig. 1 Middle;
Fig. S2). On mesic soil, a group of four species (Acer rubrum, Acer
saccharum, Quercus rubra, and Tilia americana) had much
greater Ẑ* values than the others, and these were the four species
observed to be significantly late-successional (SI Appendix, Ap-
pendix 1). Similarly, on xeromesic soils, A. rubrum and Q. rubra
had the greatest Ẑ* values, and these were the two species
observed to be significantly late-successional. The pattern was
less clear on hydromesic and hydric soil, but in both cases the
significantly late-successional species were among the species
with the greatest Ẑ* values. Finally, Populus tremuloides, the only
significantly early-successional species on all four soil types, had
a very low Ẑ* but a high H20 on all soil types.

Understanding Succession
Secondary succession in forests is often considered to proceed
from shade-intolerant to shade-tolerant species (e.g., see refs. 22
and 23). However, there are other, interrelated hypotheses (e.g.,
see refs. 24–26). For example, according to the differential
longevity hypothesis (27), late-successional species dominate old
stands because they survive longer. The Ẑ*j and H20,j metrics
allow us to take a formal approach to understanding forest
succession in this region. The Ẑ* metric (Eq. 1) naturally
decomposes into three multiplicative terms separating height
allometry (�j), canopy performance [ln(2��j

2FGL,j
2 �L,j

�3)] and
understory performance (GD, j/�D, j), with the latter two terms
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being determined, in part, by the height allometry parameter �
(Table S4). Only the last term can be said to correspond to shade
tolerance, because only understory trees experience shade.

We find that, on each soil, late-successionals tend to have
greater understory performance than the early-successional
(Populus tremuloides) on the same soil (Fig. S2). Examination of
parameter estimates (Table S4) shows that the superior under-
story performance of late successionals is primarily attributable
to lower understory mortality (�D, j) rather than faster under-
story growth (GD, j). Late successionals also tend to have supe-
rior canopy performance (Fig. S2), again primarily because of
lower canopy mortality (�D, j) rather than faster canopy growth
(GD, j) (Table S4). Differences in height allometry (Table S4) are
generally not important in determining differences in Ẑ*. The
exception is Thuja occidentalis, which has a much lower � j than
the other species (Table S4), which is why T. occidentalis has an
intermediate value of Ẑ* on hydromesic and hydric soils despite
good understory and canopy performance (Fig. S2). These
results provide support for the differential longevity hypothesis:
high Ẑ* of late-successional species is primarily attributable to
low mortality rates (understory and canopy). The results are also
consistent with the shade-tolerance hypothesis (greater under-
story performance of late successionals) via understory mortal-
ity rather than growth.

We also find that each soil type contains a group of species
spread along a successional axis from high H20, j, low Ẑ* (early
successionals) to low H20, j, high Ẑ* (late successionals). This
pattern is clearly seen on the xeromesic and mesic soils (Fig. 1).
However, each soil also contains apparently inferior species with
relatively low values of both Ẑ* and H20 (Fig. 1 Middle, gray
symbols), which have, nonetheless, not been lost from these
communities. In addition, hydromesic and hydric soils have one
species (A. rubrum) that seems superior to all others in the sense
that it lies substantially above the successional axis defined by the
other species (Fig. 1 Middle). Yet, A. rubrum does not dominate
these communities. Taken together, these observations indicate
that the analysis has missed some important processes respon-
sible for the current species composition of old stands in this
region (see Discussion).

Predictions for Species Composition
For each soil type the PPA predicted the 100-year dynamics for
each species and, hence, the species composition of 100-year-old
stands. Again, a match between these predictions and observa-
tions would only be expected if the processes controlling the
dynamics have remained close to constant during the 100 years
up to the 1990s. Therefore, we expected, a priori, mismatches
between predictions and observations for three species that are
considered to have gone through important changes in dynamics
over the previous century. T. occidentalis is currently thought to
be suffering a lack of recruitment, with stands on wet soils in this
region no longer succeeding to T. occidentalis dominance despite
the fact that T. occidentalis currently dominates old stands on wet
soils, implying that it recruited well in the past (28–31). A.
rubrum has become increasingly dominant on a variety of soil
types in the eastern United States since European settlement
[the red maple paradox (32)]. Also, Abies balsamea suffers from
regular outbreaks of spruce budworm, during which a large
percentage of trees are often killed (33, 34). At least one such
outbreak occurred between surveys in the inventory data that we
used here [Michigan 1985–1988 (35)].

On xeromesic soil, predictions match observations in terms of
the species composition of 100-year-old stands and the shift in
dominance from Populus tremuloides and Pinus banksiana to Q.
rubra and A. rubrum (Fig. 1 Bottom). On mesic soil, the match
between predictions and observations is close, but the relative
positions of A. rubrum and A. saccharum are reversed (observed,

saccharum � rubrum; predicted, rubrum � saccharum). This
mismatch is consistent with the red maple paradox.

On hydromesic and hydric soils, the predictions and chrono-
sequences showed a qualitative mismatch. On both soil types,
100-year-old stands are dominated by T. occidentalis (Fig. 1). In
contrast, the PPA predicts that 100-year-old stands should not be
dominated by T. occidentalis (Fig. 1 Bottom) or succeeding to
eventual dominance by T. occidentalis (Fig. 1 Middle; T. occi-
dentalis does not have the greatest Ẑ* on either soil). Instead, the
PPA predicts dominance by Fraxinus nigra and A. rubrum on
hydromesic soil, and by Larix laricina, F. nigra, T. occidentalis, A.
rubrum, and Picea mariana on hydric soil. However, on both
soils, the predictions for the 100-year change in abundance of
Populus tremuloides were accurate (Fig. 1).

Discussion
The purpose of this article was to assess whether the PPA might
be a useful model for predicting and understanding the dynamics
of real forest communities. We found that predictions generally
matched observations for the dynamics of basal area, the timing
of succession, and size distributions, as did several detailed
predictions for the dynamics of particular species, including
simple analytical metrics predicting the outcome of interspecific
competition (Fig. 1; Figs. S1–S3). Moreover, species-level mis-
matches between predictions and observations (Fig. 1) correctly
identified previously recognized changes in forest dynamics in
the region. These mismatches underscore the independence of
the tests used here. If the individual and stand-level data had
been tautologically related, the model could not have failed to
predict the stand-level data. Taken together, our results indicate
that the PPA is a potentially useful model for studying forest
dynamics.

Theoretical findings from the PPA have been highlighted
previously (19, 20). These findings are now bolstered by our
demonstration that the PPA model can predict the dynamics of
real forest communities. One such finding is a pair of metrics
(Ẑ* and H20) that predict competitive ability for the early- and
late-successional niche from individual-level species parameters.
It is perhaps obvious that these parameters must combine to
determine the competitive ability for a given niche (9, 36–38),
but exactly how was largely opaque before the development of
the PPA. In this case, H20 and Ẑ* were relatively successful in
predicting the outcome of succession on each soil type. Also,
they allowed us to formally test hypotheses about the causes of
succession and to formally identify successional trade-offs op-
erating in this region. These results suggest that the PPA might
prove useful in interpreting the large body of empirical work on
interspecific differences in, and trade-offs among, species traits
in forest communities (e.g. see refs. 39–41).

The results also point to the importance of processes not
captured by the simple special case of the PPA used here. These
and other considerations point to extensions of the model and
statistical methods. For example, we found that approximately
half of the species studied here deviated from the successional
axis (Fig. 1 Middle), and yet these species have not disappeared
or outcompeted all other species (as would be expected for
inferior or superior species, respectively). Closer examination
suggests several explanations including environmental special-
ization within the soil-type classification used here [e.g., Betula
papyrifera to cold locations or poor soils (34)], specialization to
disturbance by fire [Pinus banksiana (34)], and changes in
performance either directionally (decreasing for T. occidentalis,
increasing for A. rubrum) or intermittently (e.g., insect outbreaks
affecting Abies balsamea). Several aspects of the dynamics might
be affected by variation in understory light [e.g., as a result of
interspecific and ontogenetic variation in canopy transmissivity
(39)], which was not included explicitly here. We also assumed
a single fecundity value F for all species on each soil type. We
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could not estimate F from the inventory data, because it only
included trees with a dbh of �2.5 cm (SI Appendix, Appendix 2).
A potential problem that could be resolved by including species-
specific F is the estimate, for some species on some soils, of
negative Ẑ* (plotted as zero in Figs. 1 and Figs. S1–S3), implying
that these species cannot persist, even in monoculture, on these
soils (19). Although the species in question are likely to have low
Ẑ* values, it is likely that the true Ẑ* values are positive, perhaps
because, in reality, these species have greater fecundity than the
other species.

At a more fundamental level, it is important to note that the
PPA, in scaling from trees to stands, occupies the center of a
much broader scaling from leaves and roots (or even lower levels
of biological organization) to the globe. The other parts of this
scaling need to be understood before we can accurately predict
the response of global forests to climate change (42). Our current
understanding of the response of global forest dynamics to
climate change comes from dynamic global vegetation models
(DGVMs), the current generation of which scale directly from
physiology to ecosystem properties, giving little attention to the
individual, population, and community scales in between (5, 6).
Because the PPA scales from trees to stands and can be
simulated rapidly, it could form the basis of a new generation of

DGVMs. However, it would first be necessary to understand how
increased CO2 and associated changes in climate might affect the
growth, mortality, fecundity, and allometry of individual trees.
This requirement highlights the need for improved ecophysi-
ological models that scale properly from leaf and root physiology
(and their interaction with CO2, light, and temperature) to
whole-tree growth and mortality (43) and for statistical studies
that relate variation in vital rates to chronic differences in
climate and soils (e.g., see ref. 44). Also, the PPA applies only
to a single forest stand (a region of forest with a relatively
homogeneous environment and shared recent history), whereas
forested landscapes are composed of tens of thousands of stands,
at different stages of disturbance, and subject to varying physical
environments. Therefore, to create a tenable model of regional
or global forest dynamics on the basis of the PPA, it would be
necessary to couple the PPA with models that operate at the
landscape scale (45).
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