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Genomic approaches have accelerated the study of the quantitative genetics that underlie phenotypic variation. These

approaches associate genome-scale analyses such as transcript profiling with targeted phenotypes such as measurements

of specific metabolites. Additionally, these approaches can help identify uncharacterized networks or pathways. However,

little is known about the genomic architecture underlying data sets such as metabolomics or the potential of such data sets to

reveal networks. To describe the genetic regulation of variation in the Arabidopsis thaliana metabolome and test our ability to

integrate unknown metabolites into biochemical networks, we conducted a replicated metabolomic analysis on 210 lines of

an Arabidopsis population that was previously used for targeted metabolite quantitative trait locus (QTL) and global

expression QTL analysis. Metabolic traits were less heritable than the average transcript trait, suggesting that there are

differences in the power to detect QTLs between transcript and metabolite traits. We used statistical analysis to identify a

large number of metabolite QTLs with moderate phenotypic effects and found frequent epistatic interactions controlling a

majority of the variation. The distribution of metabolite QTLs across the genome included 11 QTL clusters; 8 of these clusters

were associated in an epistatic network that regulated plant central metabolism. We also generated two de novo biochemical

network models from the available data, one of unknown function and the other associated with central plant metabolism.

INTRODUCTION

Understanding the molecular and genetic bases of complex

traits like disease resistance, growth, and development is a uni-

fying goal in diverse scientific fields. Genetic variation regulating

complex traits in natural populations is largely quantitative and

polygenic and can interact with environmental, epigenetic, and

other genetic factors (Falconer and Mackay, 1996; Lynch and

Walsh, 1998). Quantitative trait mapping, the most common ap-

proach to the analysis of complex traits, measures the associ-

ation of genetic markers with phenotypic variation, delineating

quantitative trait loci (QTL) (Liu, 1998; Lynch and Walsh, 1998).

Computational and genomic advances have generated increas-

ingly precise QTL maps for a wide array of traits, ranging from

development and morphology to metabolism and disease resis-

tance (Kliebenstein et al., 2002b; Lexer et al., 2005; Symonds et al.,

2005; Anderson et al., 2006; Keurentjes et al., 2006; Hoffmann

and Weeks, 2007; Yagil et al., 2007). However, the molecular

bases of many quantitative traits remain unknown despite the

long history of QTL identification (Sax, 1923).

Quantitative trait analysis is enhanced by the use of microarray

technology to measure global transcript levels in mapping pop-

ulations and to map expression QTLs (eQTLs) (Jansen and Nap,

2001; Doerge, 2002; Schadt et al., 2003). Whole genome eQTL

analysis in multiple organisms has revealed that gene expression

traits are highly heritable, with a complex genetic architec-

ture (Brem et al., 2002; Schadt et al., 2003; Morley et al., 2004;

Keurentjes et al., 2007; West et al., 2007). These studies found

large numbers of both cis- and trans-acting eQTLs, with evi-

dence of nonadditive genetic variation such as epistasis and

transgressive segregation as well as genetic variation altering

entire transcriptional networks (Kliebenstein et al., 2006; Keurentjes

et al., 2007; Potokina et al., 2008). Recent work directly links

eQTLs to phenotypic alterations in specific metabolic pathways,

highlighting the complexity of interactions between transcript

and metabolite variation (Sønderby et al., 2007; Wentzell et al.,

2007; Hansen et al., 2008). These analyses suggest significant

differences between the organization of genetic regulation of

transcripts and metabolites for a specific subset of Arabidopsis

thaliana secondary metabolites (Wentzell et al., 2007), but this hy-

pothesis has not been broadly tested within the plant metabolome.

Quantitative genetic analysis in plants has enabled the detailed

molecular dissection of several secondary metabolite biosyn-

thetic pathways (Magrath et al., 1993; McMullen et al., 1998;

Kliebenstein et al., 2001b, 2001c; Szalma et al., 2005). In addi-

tion, broad-spectrum metabolite analyses now allow QTL map-

ping of an expanded portion of the plant metabolome (Keurentjes

et al., 2006; Schauer et al., 2006; Meyer et al., 2007). This
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approach has confirmed known secondary metabolite QTLs and

aided the identification of a new enzymatic step in a known sec-

ondary metabolite pathway (Kliebenstein et al., 2001a; Kroymann

et al., 2003; Keurentjes et al., 2006). It remains to be tested

whether metabolomic analyses can generate hypotheses re-

garding new pathways or recreate linkages between known met-

abolic pathways.

Comparative analysis of metabolite and developmental varia-

tion suggests an integral link between plant central metabolism

and development/physiology, but QTLs for metabolite and de-

velopmental traits were not colocalized more than expected by

chance (Keurentjes et al., 2006; Meyer et al., 2007). This lack of

overlap between known development and metabolite QTLs may

indicate that genetic regulation of plant metabolism is more

complex than presumed, such that current studies lack sufficient

power to detect the majority of metabolite QTLs present in a

population. The level of genetic complexity regulating plant

metabolism will determine the size of the structured mapping

populations necessary for effective QTL analyses and could

potentially affect the methodology and interpretation of associ-

ation mapping studies (Beavis, 1994, 1998; Nordborg et al.,

2005; Clark et al., 2007).

To begin describing the genetic regulation of variation in the

Arabidopsis metabolome, we conducted metabolomic analyses

on the Arabidopsis Bayreuth-0 (Bay) 3 Shahdara (Sha) recom-

binant inbred line (RIL) population (Loudet et al., 2002). This

population has previously been utilized for targeted metabolite

QTL and global eQTL analysis (Loudet et al., 2003; Calenge et al.,

2006; Kliebenstein et al., 2006; Wentzell et al., 2007; West et al.,

2007). Metabolic traits were less heritable than were global

transcript levels, suggesting that metabolite accumulation may

be more susceptible to environmental influence. Statistical anal-

ysis identified a large number of metabolite QTLs with moderate

phenotypic effects, and informed pairwise marker tests showed

that epistasis strongly influences the genetic architecture un-

derlying the Arabidopsis metabolome. Eleven QTL clusters influ-

enced more metabolites than expected. Eight of these clusters

are associated in an epistatic network that appears to regulate

plant central metabolism. Two clusters were associated with

previously identified secondary metabolite loci (Kliebenstein

et al., 2001b, 2001c). These results show that the genetic

architecture underlying the Arabidopsis metabolome is highly

complex and governed by numerous epistatic interactions. In-

terpreting relationships among these QTLs will require the anal-

ysis of significantly larger mapping populations. In spite of the

limited power available in 210 RILs, we were able to identify two

de novo biochemical networks, one of unknown function and the

other associated with central plant metabolism.

RESULTS

Metabolite Distribution and Detection

We utilized the University of California Davis Metabolomics Core

gas chromatography–time of flight–mass spectrometry (GC-

TOF-MS) metabolomics platform to measure metabolite accu-

mulation in the Arabidopsis accessions Bay and Sha, the parents

of the Bay 3 Sha RIL population (Loudet et al., 2002; Nikiforova

et al., 2005). This GC-TOF-MS platform is believed to detect

predominantly primary metabolites within plant samples, and

metabolites are identified based on comparison with reference

spectra (Roessner et al., 2001; Meyer et al., 2007; http://

fiehnlab.ucdavis.edu/Metabolite-Library-2007). The Bay and

Sha parents significantly differed in metabolite accumulation

for 61 of 396 metabolites detected in this preliminary experiment

(see Supplemental Data Sets 1 and 2 online). Metabolites differ-

ing significantly between Bay and Sha included phosphoric acid

and a diverse set of amino acids, sugars, and fatty acids. Each

parent had the highest levels of roughly equal numbers of me-

tabolites, with Sha showing higher levels of tricarboxylic acid

cycle (TCA) and pentose phosphate–associated metabolites,

while Bay was typically higher in amino acids and storage sugars

(see Supplemental Data Set 2 online). Consistent with a global

analysis of variable transcript accumulation in these same par-

ents, the average metabolite heritability as measured using just

the Bay and Sha parents was 7% (Figure 1A). The distribution of

metabolite and transcript heritabilities was similar using these

Figure 1. Metabolite and Transcript Level Heritabilities.

(A) Histogram of estimated broad-sense heritability values in RIL parental

accessions Bay and Sha for metabolites (black) and transcripts (gray).

Values are presented as percentages of the 397 total metabolites or

22,746 total transcripts with a given heritability.

(B) Histogram of estimated broad-sense heritability values in 210 Bay 3

Sha RILs for metabolites (black) and transcripts (gray). Values are

presented as percentages of the 371 total metabolites or 22,746 total

transcripts with a given heritability.
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two parents, with transcripts having a slightly heavier tail (Fig-

ure 1A).

To measure metabolomic variation in the progeny from Bay

and Sha, four biological replicate samples from each of 210

Bay 3 Sha RILs were analyzed via a GC-TOF-MS platform. The

majority of the metabolites (330) were detected in both parents

and >90% of the RILs, while a subset of metabolites were

detected in one parent but not the other (40 in Bay only and 28 in

Sha only). As found in previous Arabidopsis metabolite QTL stud-

ies, a significant number of metabolites (226) was detected in the

RILs only (Kliebenstein et al., 2001c, 2002a; Lambrix et al., 2001;

Keurentjes et al., 2006) (see Supplemental Figure 1 online). The

presence or absence of metabolites was likely caused by a

mixture of polymorphisms with qualitative and quantitative ef-

fects, as over half of the known metabolites were detected in

fewer than half of the RILs. This included pyruvate, salicylic acid,

citrulline, and Met, all metabolites with central roles in plant

metabolism. These metabolites are likely present in all of the RILs

but below the detection threshold in some lines.

In a prior study of two specific Arabidopsis secondary metab-

olite pathways, average heritability estimates for metabolite traits

were less than those for the transcripts encoding the biosynthetic

enzymes (Wentzell et al., 2007). Our analysis of heritability for all

metabolites detected in both replicate RIL experiments showed

that the average heritability was 25% and the highest heritability

was 55% (Figure 1B; see Supplemental Data Sets 3 and 4 online;

these data sets also include measures of all other estimatable

sources of variance for this experiment). This range of metabolite

heritability was much lower than the distribution of global tran-

script heritability, suggesting that these metabolite traits in

Arabidopsis were subject to more influence and/or noise from

both the internal (physiological) and external plant environment

(Figure 1B).

The difference in metabolite heritability, in terms of both

qualitative metabolite presence and quantitative metabolite

content, between the RILs and parents resulted from transgres-

sive segregation. It increased the level of genetically regulated

phenotypic variation within the RILs in comparison with the par-

ents, thus leading to an increase in genetic variance or heritability

as measured in the RILs. Transgressive segregation for metab-

olite presence was manifested in the significant fraction of

metabolites found in both parents that were not detected in all

RILs as well as in metabolites found in neither parent but de-

tected in a number of the RILs (see Supplemental Figure 1 online).

Analysis of the RILs for 330 metabolites found in both parents

identified positive and negative transgressive segregation for

metabolite accumulation (see Supplemental Figure 2 and Sup-

plemental Data Set 5 online). Positive transgressive segregation

was found for 143 metabolites, in which at least half of the RILs

had metabolite accumulation more than twice the value of the

highest parent and <5% of the RILs had values lower than the

lowest parent. One hundred thirty-eight metabolites showed

negative transgressive segregation, in which half of the RILs had

metabolite accumulation lower than half of the lowest parent

and <5% of the RILs accumulated metabolite levels higher than

the highest parent. Of the remaining metabolites, the majority

showed transgressive segregation in both directions (see Sup-

plemental Data Set 5 online). Thus, Bay and Sha possess

significant genetic variation for metabolite accumulation that is

not evident in the parental phenotypes.

Metabolomic QTL Location and Effect

Data from 557 metabolites present in the 210 Bay 3 Sha RILs

were used to map QTLs. The composite interval mapping (CIM)

algorithm within QTL Cartographer identified 438 QTLs affecting

243 metabolites (Figure 2; see Supplemental Data Set 6 online).

This included 77 putatively identified metabolites and 166

unknown compounds (http://fiehnlab.ucdavis.edu/Metabolite-

Library-2007). For 315 metabolites, no QTLs were detected

using CIM: these were equally split between metabolites de-

tected and not detected in the parents. Metabolic QTLs were not

equally distributed across the genome, and we identified 11

regions that contained more metabolite QTLs than expected by

random chance (permutation estimated P < 0.05; Figure 2). Five

of these metabolite QTL clusters (Met.chromosome.centimorgan

[cM]), Met.II.15, Met.II.47, Met.III.04, Met.IV.65, and Met.V.67,

colocated with previously identified eQTL hot spots, suggesting

a link with transcript variation (West et al., 2007). The remaining

loci did not associate with eQTL hot spots. However, colocaliza-

tion of the AOP and Elong loci with known QTLs that determine

aliphatic glucosinolate accumulation, glucosinolate structure,

and transcript accumulation for aliphatic glucosinolate biosyn-

thetic genes suggests that eQTL hot spots can be pathway- or

network-specific and may not appear within genome-scale

analyses (Wentzell et al., 2007).

To further investigate the allelic effects of these metabolite

QTL clusters, we utilized analysis of variance (ANOVA) to test the

marker closest to the peak of each metabolite QTL cluster for

association with metabolite accumulation. We individually ana-

lyzed all 557 metabolites detected in the RILs to test whether

variation in their accumulation was associated with any of the

metabolite QTL clusters. After correction for multiple compari-

sons, this analysis showed that 372 metabolites associated with

at least one QTL hot spot (see Supplemental Data Set 6 online).

Increased QTL detection via this approach could be attributed to

the inclusion of significant QTLs in the model, thus decreasing

error variance and increasing the power to detect QTLs that may

have been marginal in the CIM analysis. This approach had crude

similarities to multiple-interval mapping approaches. By con-

trast, the CIM analysis focused on individual loci and did not

allow for the error term to be adjusted downward for significant

QTLs.

The ANOVA provided two estimates of allelic effect for each

significant QTL. First, the genetic r2 estimated the proportion of

phenotypic variance attributable to genotype at that specific

locus. Second was the allelic substitution effect, which ex-

pressed the change in phenotype associated with substitution

of one parental allele for the other at the queried locus (Figure 3).

In a population possessing a broad range of phenotypic values,

allelic substitution effects may be more reflective of the biological

impact of a given locus than genetic r2. For example, if a pop-

ulation has a 10-fold range in phenotype, a specific QTL of 10%

r2 will have a 1-fold phenotypic difference or 100% allelic

substitution effect. Since the phenotypic range for many metab-

olites in this RIL population was quite large, the majority of
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detected QTLs had an allelic substitution effect size of 30% or

greater despite small r2 values (Figure 3; see Supplemental Data

Set 5 online). These low estimates of genetic r2 also suggested

that numerous unidentified genetic loci influenced metabolite

concentrations in this population.

HIF195 and Genetic Limitation on Detection Power

The power to detect a QTL is predominantly determined by its

genetic r2, the amount of phenotypic variance apportioned to a

specific QTL within the given population. Within our analysis of

Figure 2. Genetic Architecture of Metabolite QTLs across the Arabidopsis Genome.

(A) Number of metabolites for which a QTL was detected within a 10-cM sliding window. The number of metabolite QTLs is plotted against the genetic

location of the metabolite QTLs in centimorgan. The permuted threshold (P¼ 0.05) for the detection of a significant metabolite hot spot is 12 metabolite

QTLs. The graph is scaled to match the heat map in (B). The black box positioned on the x axis indicates the genomic region tested within the HIF195

analysis.

(B) Heat map of likelihood ratio test statistics obtained by CIM QTL analysis for 243 metabolites plotted across five chromosomes. Colors indicate

chromosomal regions where likelihood ratio test statistics were significantly greater than the global permutation threshold (>12.1572) at P < 0.05. Red

indicates a positive effect of the presence of the Bay allele, and green indicates a positive effect of the Sha allele. Vertical white lines separate the five

chromosomes (I to V). The diagram at right of the heat map clusters metabolites based on their QTL relationships. The likelihood ratio test statistics

across all markers for each metabolite were used to estimate distances between the metabolites using the absolute value of the Pearson moment

correlation. Clustering analyses used the weighted group average linkage. Maximal distance is 0.985 on this diagram. This figure is expanded in

Supplemental Figure 4 online. The white box highlights a group of metabolites affected by four metabolite clusters as discussed in the text.
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the Bay 3 Sha population, the wide range of metabolite con-

centrations caused QTLs with strong allelic effects to have low

genetic r2 per QTL. This suggested that our analysis may have

been underpowered and that numerous QTLs were not detected

in this replicated analysis of 210 Bay 3 Sha RILs. To test this

possibility, we utilized a higher power analysis focusing upon a

single genomic region to test whether we could identify QTLs that

were not observed in the whole genome analysis. To do this, we

obtained HIF195, a heterogenous inbred family (HIF) previously

used to validate a fructose QTL on chromosome IV in the Bay 3

Sha RILs (Calenge et al., 2006). The two HIF195 genotypes are

isogenic except for a small region on chromosome IV where one

line is Bay and the other is Sha (see black box in Figure 2A). These

lines allow a specific test of the allelic effect of a substitution at

this genomic position.

The analysis of the 210 RILs revealed 10 metabolite QTLs in

this region, including the expected fructose QTL, but this region

did not exceed the significance threshold delineating metabolite

QTL clusters (Figure 2A). We measured metabolite accumulation

in the two HIF195 genotypes using a replicated design with the

same growth conditions and analytical protocols as for the 210

RIL analysis and measured 297 metabolites. Scrutiny of the 10

metabolites with QTLs identified in the HIF region by genome-

wide analysis showed that 8 metabolites differed between the

two HIF genotypes at P ¼ 0.05, with 3 of those, including fruc-

tose, being significant at P ¼ 0.01 (see Supplemental Data Set 7

online). Expanding the analysis to the 287 other metabolites

detected in this experiment identified significant differences in

the accumulation of 42 additional metabolites between the two

HIF195 genotypes, with an average allelic substitution effect of

28%. These differences were significant at the P ¼ 0.01 level,

where we expect three false-positives in 297 tests (64 total

metabolites were significant at P¼ 0.05; see Supplemental Data

Set 7 online). Polymorphism(s) in this region of the genome,

therefore, altered diverse aspects of primary metabolism (Figure

4). Given the broad impact of this single region, which was not

initially identified as a metabolic QTL hot spot, we conclude that

recombination in the 210 RILs was likely insufficient to allow the

detection of all metabolite QTLs present in this population

(Beavis, 1994, 1998). HIF analysis may also increase QTL de-

tection power if HIF195 possesses a genetic background that

optimizes alleles present at loci epistatic to those directly tested

by HIF195 to increase measured QTL effects. However, because

genotypes at nontarget loci are fixed randomly in the HIF, any

specific HIF has an equal chance of increasing or decreasing the

power to detect significant differences in an epistatic combina-

tion. Where resources are available, testing multiple HIFs for a

given region would allow the discrimination of genetic back-

ground effects.

Metabolomic QTLs and Metabolic Pathways

To better understand the relationships among metabolite QTL

clusters, we clustered metabolites based on QTL position and

allelic effect, thus connecting metabolite QTL clusters based on

shared regulation of specific metabolites. For instance, the AOP

locus altered a predictable set of metabolites, given its role in

glucosinolate metabolism, with metabolites such as Met and

glucose-1-phosphate (G-1-P) forming a discernible cluster de-

fined by a strong effect of AOP (Figure 2B; see Supplemental

Data Set 8 online). Clustering analysis suggested that polymor-

phisms at the Met.I.42, Met.I.80, Met.II.15, and Met.II.47 loci

affected a core set of metabolic pathways (see white box in

Figure 2B). The other identified metabolite QTL clusters did not

show specific metabolic pathway associations.

To visualize QTL effects, we developed a rough map of central

plant metabolism (Mueller et al., 2003; Zhang et al., 2005) and

plotted the known metabolites influenced by each QTL cluster

(Figure 4). This showed that the previously associated Met.I.42,

Met.I.80, Met.II.15, and Met.II.47 loci had global effects on

central metabolism (Figures 2A and 4). While these four loci

altered the accumulation of numerous unknown metabolites,

they showed a significant enrichment for known metabolites in

central metabolism (x2 test P < 0.001 for all four QTLs; Figure 4;

see Supplemental Data Set 8 online). Most central metabolites

Figure 3. Distribution of Metabolomic QTL Effect Sizes.

The allelic effects of the metabolite QTLs were estimated. The number of

QTLs with a given QTL effect size is given on the y axes. The range of

QTL effect sizes is listed on the x axes. The absence of QTLs near an

effect of zero is due to limited statistical capacity to detect these small-

effect loci rather than a real absence of small-effect QTLs.

(A) Histogram of QTL effects as estimated by each QTL’s genetic r2

(reflecting the proportion of genetic variation apportioned to that QTL).

(B) Histogram of QTL effects as estimated by determining the impact of

an allelic substitution upon the trait as a percentage of the average trait

value. This was calculated by subtracting the average trait value for the

lines with the Sha genotype at a QTL from the average trait value for the

lines with the Bay genotype at the same QTL. This was then divided by

the average trait value across all RILs to standardize the allelic effect

estimate.

Epistasis and Metabolomics 1203



Figure 4. Metabolite QTL Hot Spots Alter Primary Metabolic Networks.
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showed a similar direction of allelic effect for a given QTL, such

that for Met.I.42 and Met.II.15, the Bay allele led to higher

accumulation for all of the plotted metabolites, while in Met.II.47,

the Sha allele led to elevated metabolite levels (Figure 4). A

similar bias was detected for the unknown metabolites (see

Supplemental Data Set 4 online). In Met.I.80, the Sha allele led to

higher accumulation of all metabolites except for glucose and

fructose, which had decreased accumulation (Figure 4). This

suggested that a polymorphism in Met.I.80 might have altered

the interconversion of glucose-6-phosphate and fructose-6-

phosphate into glucose and fructose, respectively. However,

none of the Arabidopsis hexose kinases are located in this

region, suggesting that Met.I.80 was not caused by a hexose

kinase polymorphism.

In contrast with the above four metabolite QTL clusters with

primarily central metabolism effects, the other seven clusters

showed no significant bias for known or unknown metabolites (x2

test P > 0.10 for all seven QTLs) nor any significant metabolite

groupings suggestive of particular functions (Figure 4; see Sup-

plemental Data Set 8 online). For instance, the AOP locus altered

the accumulation of Met and G-1-P, as would be expected given

that Met and G-1-P are required for glucosinolate metabolism

(Figure 4) (Kliebenstein et al., 2001a, 2001b; Wentzell et al.,

2007). However, the AOP QTL was additionally associated with

altered aromatic amino acid and fatty acid accumulation. The

AOP QTL also altered the accumulation of numerous metabolites

of unknown association with the aliphatic glucosinolate pathway.

A similar pattern of diffuse network effects on central and

unknown metabolites was found for the other metabolite QTL

clusters (see Supplemental Data Set 8 online).

Logic Approach to Biochemical Network Generation

with QTLs

Combining natural genetic variation with quantitative metabolite

analysis enabled the identification and validation of parts of the

aliphatic glucosinolate biosynthetic pathway (Magrath et al.,

1993; Kliebenstein et al., 2001a, 2001c; Kroymann et al., 2003;

Keurentjes et al., 2006; Wentzell et al., 2007). This used pre-

dominantly a logic-based method of pathway generation, such

that if two metabolites were linked by enzymatic processes, a

QTL affecting that process would lead to opposite effects on the

two metabolites (see QTLX in Figure 5A) (Magrath et al., 1993;

Mithen and Campos, 1996; Kliebenstein et al., 2001c). If the QTL

repressed the enzymatic processes converting one metabolite to

another, the first metabolite would increase at the cost of the

accumulation of the second metabolite (Figure 5A). The reverse

should be true if the QTL stimulated the enzymatic processes.

We developed a computational approach to this problem and

applied the algorithm to the glucosinolate pathway using data

from the same 210 Bay 3 Sha RILs described in this report

(Wentzell et al., 2007). This generated a hypothetical pathway

that was similar to the known biosynthetic linkages (Figure 5B).

One difference was the prediction from the logic-based hypo-

thetical pathway that the AOP locus interconverts 3OHP and Allyl

glucosinolates. However, the apparent interconversion was a

result of the genetics of the AOP locus, in which two alleles

distinguish between the production of the two compounds, due

to differential expression of two tandem enzymes (Kliebenstein

et al., 2001a). Thus, this logic algorithm approach could generate

approximate metabolic pathways that were constrained by the

underlying genetics.

To test a broader application of this approach, we applied this

logic algorithm to the QTL Cartographer data set generated using

210 Bay 3 Sha RILs to identify putative biochemical associations

between metabolites (Figures 5C and 5D). One metabolic net-

work associated a series of unknown metabolites with the

identified compound 4-picolinate. 4-Picolinate is not currently

known as a natural metabolite within Arabidopsis and may

represent a breakdown product of dihydrodipicolinate or tetra-

hydrodipicolinate, metabolites required for Lys biosynthesis in

Arabidopsis (Sarrobert et al., 2000). However, the lack of asso-

ciation between QTLs for Lys and picolinate fails to sup-

port this explanation for its presence (see Supplemental Data

Set 6 online). Interestingly, 2-picolinate and modified forms of

4-picolinate can induce defense responses in plants, suggesting

a potential biological role for this compound if it is truly produced

in planta (Uknes et al., 1992; Zhang et al., 2004; Kim et al., 2006).

The second biochemical network identified also contained

both unknown and identified metabolites, including fructose-

6-phosphate and sedoheptulose, components of the pentose

phosphate pathway (Figure 5D). This suggested that the pentose

phosphate pathway participated in this network. The inclusion of

shikimate, which is synthesized from erythrose-4-phosphate

obtained from the pentose phosphate pathway, in this network

supported this hypothesis (Figure 5D). Erythrose-4-phosphate

Figure 4. (continued).

(A) Diagrammatic representation of central energy and biosynthetic metabolism. Arrows represent associations between given metabolites and not the

number of specific biosynthetic steps between the metabolites. Amino acids are listed by their three-letter abbreviations. Fatty acids are labeled as C10

to C28, indicating different chain lengths, and are represented by eight boxes in (B). Gray lettering/boxes indicate metabolites not measured in this

experiment. Other abbreviations are as follows: aKG, a-ketoglutaric acid; Fru1,6P, fructose-1,6-bisphosphate; Fru6P, D-fructose-6-phosphate; Glu6P,

D-glucose-6-phosphate; Fru, fructose; Glu, a-D-glucose; P-gly, phosphoglycerate; gly-3-P, glyceraldehyde-3-phosphate; sn-gly-3-P, sn-glycerol-3-

phosphate; PEP, phosphoenolpyruvate; Glu1P, glucose-1-phosphate.

(B) For the individual QTLs, as labeled, boxes represent the impact of an allelic substitution at that locus on the given metabolites. Red shows a positive

effect of the Bay allele on that metabolite, and blue shows a positive effect of the Sha allele. Dark coloring indicates an effect of >50%, while lighter

coloring means that the effect was 50% or less. QTL significance and allelic substitution effects were directly estimated in the ANOVA used to test the

effects of the 11 metabolite hot spots on all metabolites. White boxes show that the QTL had no statistically significant effect on that metabolite. The

numbers of known and unknown metabolites significantly regulated by each QTL at P < 0.01 are listed in parentheses (known, unknown). HIF195

(bottom right) shows the metabolites found to differ between the HIF195 lines.
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was not a component of the reference metabolomics database,

so it is possible that it was one of the unknown compounds. Ad-

ditionally, the presence of succinate suggested that this bio-

chemical network also involved the TCA cycle. Identification of

these two networks suggested that a logic-based approach

could derive biochemical networks directly from metabolomics

QTL data. However, these associations did not provide direct

evidence for the molecular nature of the QTL or the biochemical

association.

The AOP and Elong QTLs and Biosynthetic Linkages

In addition to the logic approach to biosynthetic pathway anal-

ysis, previous work has shown that epistatic QTLs can provide

insight into biochemical relationships between metabolites

within a pathway (Mithen and Campos, 1996; Kliebenstein

et al., 2001b; Lambrix et al., 2001; Keurentjes et al., 2006; Zhang

et al., 2006; Wentzell et al., 2007). These studies focused on

epistasis between the AOP and Elong QTLs, in which all detected

aliphatic glucosinolates identified an interaction between AOP

and Elong (Figure 6). We tested whether it was possible to link

metabolites to the glucosinolate biosynthetic pathway based on

their regulation by an epistatic interaction between AOP and

Elong. We hypothesized that regulation of two metabolites by the

same QTL–QTL interaction was less likely to result from chance

or false detection than from shared regulation of two metabolites

by a single QTL.

This epistatic association test identified 31 metabolites whose

accumulation was determined by an epistatic interaction be-

tween these two loci (Figure 6). The majority of these 31 metab-

olites were unidentified compounds that share common QTLs

with known glucosinolates and showed either positive or nega-

tive epistasis between AOP and Elong (Figure 6). This suggested

that these metabolites, if not aliphatic glucosinolates them-

selves, may be intermediates in the biosynthetic pathway. Since

some intermediates in this pathway are elongated Met

Figure 5. QTL Utilization for Pathway Generation.

(A) The hypothetical impact on the accumulation of two metabolites in a biochemical pathway if the pathway linking the two metabolites is altered via

QTLs at two different positions. One metabolite’s accumulation is positively affected, while the other’s is negatively affected by QTLX. Both metabolites

are positively affected by QTLY.

(B) to (D) Arrows link metabolites showing a positive or negative association with a QTL. Arrows are double-headed to show that biochemical

directionality cannot be ascertained from these data. Labels above or next to the arrows show the chromosome (Roman numerals) and centimorgan

(Arabic numerals) positions of QTLs. Vertical and horizontal lines link metabolites that show a similar direction of effect for a given QTL. Metabolite labels

are described in Supplemental Data Set 1 online. Abbreviations for glucosinolates are as follows: 8MSO, 8-methylsulfinyloctyl; 8MT, 8-methylthiooctyl;

4MT, 4-methylthiobutyl; 4MSO, 4-methylsulfinylbutyl; 3MT, 3-methylthiopropyl; 3OHP, 3-hydroxypropyl. (B) shows glucosinolate metabolite linkages.

(C) represents metabolites showing pathway linkages with 4-picolinate/isonicotinate. (D) represents metabolites showing pathway linkages with

shikimate. Known primary metabolites were used to separate the metabolites into previously defined central metabolic pathways.
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derivatives and related organic acids, they are likely detectable

with the GC-TOF-MS platform (Textor et al., 2007). Failure to

identify QTLs at the ESP locus (controlling glucosinolate hydro-

lysis) for these unknown metabolites suggests that they are not

hydrolysis products. Interestingly, this genetic approach identi-

fied metabolites peripherally associated with glucosinolate syn-

thesis, such as glucose, glucose-1-phosphate, and Gly, as well

as metabolites such as uracil and homoglutamine with no obvi-

ous linkage to aliphatic glucosinolate metabolism. Some of these

metabolite associations could be explained by these additional

metabolites having QTLs linked to, but not caused by, AOP and

Elong. However, the requirement for epistatic interaction be-

tween these hypothetical additional QTLs diminishes the likeli-

hood that this was a random association. As such, known

epistatic loci facilitated building hypotheses regarding the asso-

ciation of additional metabolites with glucosinolate biosynthesis.

While further work is required to validate the association of these

metabolites with aliphatic glucosinolates, the association of

unknown metabolites with known biosynthetic pathways en-

hances the utility of metabolite databases and suggests ap-

proaches to determining a biological role for these unknown

metabolites.

Pairwise Epistasis

QTL studies focused on the accumulation of specific metabolites

in Arabidopsis frequently identify epistatic interactions between

QTLs with significant main effects (Kliebenstein et al., 2001b,

2002a; Loudet et al., 2003; Calenge et al., 2006; Pfalz et al.,

2007). To test whether the global metabolome showed a similar

enrichment in epistatic interactions, we formally tested all 55

pairwise epistatic interactions between the 11 metabolite QTL

clusters against the average accumulation of 557 metabolites

within the RILs. This informed model used less than one-third of

the available degrees of freedom. Using a false discovery rate

(FDR)–adjusted P value (<0.05), 240 metabolites were identified

with between one and five significant epistatic interactions, for a

total of 328 significant interactions (FDR < 0.1 identified 497

metabolites with 1538 significant interactions; see Supplemental

Data Sets 9 and 10 online). For the majority of metabolites, the

significant epistatic terms explained as much or more of the

genetic variance, in terms of genetic r2, as the combined main

effect QTLs (Figure 7A). However, individual main effect QTLs

showed larger effects than did the individual epistatic terms

(Figure 7B). This shows that epistasis was widely prevalent in the

determination of metabolite levels within this Arabidopsis RIL

population. We did not conduct an unsupervised search of all

possible pairwise epistatic interactions, as the use of only 210

RILs did not provide sufficient degrees of freedom.

Pairwise Epistasis and QTL Association

Research on mutants in yeast metabolic genes identified epis-

tasis more frequently between loci that function within the same

or closely related metabolic pathways (Segre et al., 2005). As

such, QTLs whose pairwise epistatic interactions regulate an

enhanced number of metabolites may regulate a metabolic

network. Because the pairwise marker comparisons have a

Figure 6. Epistatic Interaction of AOP and Elong.

The average metabolite accumulations in terms of percentage difference

from the RIL population average are shown for all metabolites detecting a

significant epistatic interaction between the AOP and Elong loci. Gluco-

sinolate abbreviations are as described for Figure 5. The RILs were

divided into four genotypic classes at AOP and Elong, and the average

metabolite accumulation per class was determined. Red shows that the

value was greater than the RIL population average, while green shows

that the value was less than the RIL population average. Black shows

that the value was not different from the average. Glucosinolate metab-

olites measured in a different experiment (Wentzell et al., 2007) are

shown in boldface underline. Unknown metabolites are labeled with their

database numbers. The average trait divergence from the RIL population

across the four genotypic groups was used to estimate distances be-

tween the metabolites using the absolute value of the Pearson moment

correlation. Clustering was conducted using the weighted group average

linkage. Maximal distance is 1.48 on this diagram. The dominant class of

paired alleles for each major cluster is distinguished by a separate line

color, and the pairwise AOP and Elong genotypes are as labeled. The bar

at left of the heat plot indicates whether a given metabolite exhibits

positive (red) or negative (blue) epistasis (e) between the AOP and Elong

QTLs.
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broad range of two-way allele frequencies, we used a permuta-

tion approach to identify pairwise interactions regulating more

metabolites than expected. This identified 9 of the 55 possible

pairwise epistatic interactions as affecting more metabolites

than would be expected by chance (Figure 8). The overrepre-

sented pairwise marker interactions connected 8 of the 11

identified metabolite QTL clusters. The Met.II.47 QTL was the

main hub of this network, connecting directly to five other

metabolite QTL clusters and apparently altering the accumula-

tion of metabolites associated with the TCA cycle and sulfur

metabolism. Interestingly, the interaction between Met.II.47 and

Met.I.16 altered the accumulation of nearly all fatty acids (Figure

8B). This suggests that the often overlooked effect of epistasis

can be utilized to aid in network generation with large genomic

data sets. The epistatic interaction between AOP and Elong,

while previously experimentally validated, did not exceed the

permutation-derived significance threshold, suggesting that our

permutation approach to determine significance level left a

number of false-negatives and that the observed epistasis net-

work was likely conservative.

For each interaction, we estimated a measure of epistasis (e). A

positive value of e indicated that recombinant genotypes had less

metabolite than the parental genotypes; negative e indicated

elevated metabolite content in recombinant genotypes (Figure

8). The AOP 3 Elong interaction displayed a mixture of positive

and negative epistasis. Such a mixture of epistatic effects on a

set of metabolites suggested that the polymorphisms creating

these epistatic QTLs were located within the biosynthetic path-

way. We applied this interpretation to other, less characterized

epistatic interactions. In the Met.II.47 3 Met.V.67 interaction,

positive epistasis only affected fatty acid accumulation, while

negative epistasis affected all other measures of central metab-

olism (see Supplemental Figure 3F online). This suggested that

Met.II.47 3 Met.V.67 interacted to regulate the partitioning of

carbon between fatty acids and other components of central

carbon metabolism. Similarly, in the Met.I.80 3 Met.II.47 inter-

action, the sign of epistasis changed between short- and long-

chain fatty acids, suggesting that this interaction may regulate

fatty acid elongation (see Supplemental Figure 3E online). These

analyses suggested that the Met.II.47 QTL affects the partition-

ing of carbon within the plant and may be a major regulator of

Arabidopsis metabolism. The remaining pairwise marker inter-

actions showed exclusively positive (see Supplemental Figures

3A and 3 B online) or negative (Figure 8B; see Supplemental

Figures 3B and 3G online) epistasis. All together, this analysis

showed that considering the sign of epistatic interactions can

enhance the interpretation of metabolite QTL effects.

Three-Way Epistasis

Most studies of plant quantitative traits are limited to the analysis

of pairwise epistasis, but this lack of information does not

preclude the potential for higher order interactions. Analysis of

the main effects of three central metabolism QTLs, Met.I.42,

Met.II.15, and Met.II.47 (Figure 2), and their pairwise interactions

showed that these QTLs may coordinate central metabolism

through metabolites associated with the TCA cycle (Figure 8; see

Supplemental Figure 3 online). We used an ANOVA model to test

whether TCA metabolites identify a three-way epistatic interac-

tion between Met.I.42, Met.II.15, and Met.II.47. Five of the eight

TCA metabolites that biosynthetically link citrate to Gln showed

significant three-way epistasis between Met.I.42, Met.II.15, and

Met.II.47 (Figure 9). Interestingly, a single recombinant genotype

had elevated content of all five metabolites (Figure 9). All indi-

viduals in this genotypic class, Met.I.42BAY, Met.II.15BAY, and

Figure 7. Comparison of Main QTL versus Epistatic Effects.

ANOVA including all 11 main-effect markers and their 55 pairwise

interactions was utilized to estimate the type III sums-of-squares for

each term. This gave an estimate of the genetic r2 per each term. The

nonsignificant terms were omitted from further analyses.

(A) Histogram of per metabolite QTL r2 values. For each metabolite, r2

estimates for all significant main-effect terms were summed. r2 estimates

for all significant epistatic terms were also summed. The r2 due to

epistatic terms was divided by the r2 due to the main-effect terms. The

number of metabolites (y axis) with a given ratio (x axis) is presented.

Values >1 indicate that significant epistatic terms explained more of the

genetic variance than did significant main-effect terms.

(B) Quantile–quantile plot of per individual QTL epistatic r2 (y axis) versus

per individual main-effect r2 (x axis). For each significant epistatic or

main-effect term, the genetic r2 was determined. The plot shows the

value of the individual epistatic and main-effect r2 every fifth percentile

across both entire distributions. The diagonal line shows the expected

plot if the epistatic and main-effect r2 distributions were identical.
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Met.II.47SHA, showed a 250 to 400% increase in the accumula-

tion of TCA metabolites in comparison with the average RIL

(Figure 9). This large epistatic allelic effect contrasted with the

average 30% allelic effect on these metabolites estimated for

Met.I.42, Met.II.15, and Met.II.47 as main-effect QTLs. The

biosynthetic linkage between these metabolites suggests that

polymorphisms at these three loci interact to regulate carbon

accumulation in the TCA cycle.

Including the other central metabolism QTL, Met.I.80, in the

model did not affect this result, nor was a three-way interaction

found with any two of these three QTLs and the Met.I.80 locus for

the TCA metabolites. A comparison with leaf area also showed

that this three-way epistasis caused a severe limitation in plant

growth, such that the class with the maximal TCA accumulation

had a nearly 60% reduction in growth. Given the statistical

limitation of the number of lines and available recombination, we

did not conduct an unsupervised screen for all possible three-

way epistatic interactions with all metabolites.

DISCUSSION

This study identified numerous QTLs regulating plant metabo-

lism (Figure 2). The average metabolite’s accumulation was

affected by multiple QTLs of moderate effect with epistatic

interactions, such that the contribution of pairwise epistatic

effects frequently equaled those of the main-effect QTLs. The

detection of at least one higher order (three-way) epistatic

interaction implies that fully querying this complexity will require

larger mapping populations than are currently available (Figure

9). Identification of the molecular bases of these metabolic QTLs,

especially QTLs controlling epistatic interactions, will provide

useful potential to modify plant central metabolism. This will also

improve our understanding of the molecular basis of epistasis as

well as the integration of plant central metabolism with develop-

ment and physiology. Given this estimated complexity, the

medium-sized population (210 RILs) utilized for this study likely

revealed only a fraction of the natural variation modulating met-

abolic diversity between the Bay and Sha accessions, let alone

within Arabidopsis as a species. Thus, the genetic architecture

regulating the Arabidopsis metabolome is highly complex.

The identified metabolite QTLs formed 11 clusters (Figure 2).

Four of these clusters directly associated with central metabo-

lism (Figure 4), and four different clusters epistatically associated

with central metabolism (Figure 8). Two additional clusters, AOP

and Elong, were associated with secondary metabolism, specifi-

cally aliphatic glucosinolate metabolism (Figure 6) (Kliebenstein

et al., 2001b, 2001c; Wentzell et al., 2007). This contrasts with a

previous report that three of four metabolite clusters detected in

Arabidopsis, including the AOP and Elong loci, were secondary

metabolite–associated (Keurentjes et al., 2006). This difference is

likely caused by platform-specific detection bias, as the GC-

TOF-MS platform detects predominantly primary metabolites in

addition to numerous unknown metabolites (our study), while the

liquid chromatography–mass spectrometry platform detects nu-

merous secondary metabolites (Fiehn, 2002; Keurentjes et al.,

2006).

Metabolic Pathway versus Physiology

Central metabolism QTL clusters frequently displayed directional

bias in their allelic effects, such that all metabolites were either

increased or decreased for a given genotype (Figure 4). Simple

enzyme polymorphisms affecting the conversion of one metab-

olite to another would lead to differential allelic effects upon

metabolites, depending on the relative positions of the enzyme

and metabolites within the pathway (Figures 5 and 6). The

unidirectionality of allelic effects for the central metabolism

QTL clusters suggests a more complex basis for these QTLs.

Figure 8. Epistatic Metabolite QTL Networks.

ANOVA was utilized to test the 557 metabolites present in at least 5% of the RILs for all 55 pairwise interactions between the 11 metabolite QTL hot

spots. This model used less than one-third of the available degrees of freedom. To account for any bias in pairwise genotype distribution, we randomly

permutated the genotype-to-phenotype associations 1000 times, repeated the ANOVA, and counted the number of metabolites whose accumulation

was significantly altered by each term for each permutation. For each epistatic interaction, the 95th percentile of the number of metabolites was

obtained, and only those epistatic pairwise interactions regulating more metabolites than this threshold are shown.

(A) Pairwise marker combinations showing significantly enriched epistatic interactions are illustrated by lines connecting the main-effect markers shown

within the ovals. The numbers of metabolites affected by the interaction are listed next to the line connecting the two main-effect QTLs (known,

unknown). The letters after the numbers refer to the illustration in Supplemental Figure 3 online.

(B) Met.I.16 3 Met.II.47 epistatic interaction. Central energy and biosynthetic pathways are diagrammed as in Figure 4. A black box means that the

metabolite identifies a positive epistatic interaction (e) between the two markers.
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Several of the identified metabolite QTL clusters also associate

with major gene expression polymorphisms (West et al., 2007).

These pleiotropic QTLs may regulate developmental or physio-

logical differences in the plant that subsequently alter central

metabolism. Alternatively, the effect of the QTLs upon central

metabolism might indirectly alter development or physiology. An

association between central metabolism and physiology/devel-

opment has been found in other Arabidopsis RIL studies. In two

studies, a major metabolite QTL cluster associated with an

experimentally induced polymorphism in the developmental

regulator protein ERECTA (Keurentjes et al., 2006; Meyer et al.,

2007). Explaining the bases of central metabolism QTL clusters

will require detailed analyses of physiological and developmental

traits in the Bay 3 Sha population. At this stage, the association

between growth and central metabolism is purely correlational

and does not facilitate speculation regarding the specific direc-

tion of the causal relationships between metabolic polymorphisms

and development/physiology polymorphisms. Determining the

direction of these relationships will require cloning the underlying

loci and validating their molecular functions. These relationships,

however, do suggest that RIL analysis directed toward specific

analysis of metabolomic variation may be most successful in

Figure 9. Three-Way Epistasis and the TCA Cycle.

ANOVA was utilized to test the eight TCA cycle metabolites for a three-way epistatic interaction between the Met.I.42, Met.II.15, and Met.II.47

metabolite QTL hot spots (abbreviations are as described for Figure 2). Each metabolite graph shows the average and SE of the metabolite accumulation

in terms of percentage of the RIL population average (x axis) for the eight genotypic classes (y axis; genotypes labeled in the order Met.I.42, Met.II.15,

Met.II.47, where B and S represent Bay and Sha, respectively). Statistical differences between the genotypic classes were estimated by pairwise t tests

within the model. Letters indicate three-way genotypes that are statistically different at P < 0.05 using Tukey’s honestly significant difference test. The

inset graph shows the distribution of Gln accumulation within the eight genotypic classes in terms of the RIL population average and SD.
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populations that do not segregate for variation in genes known to

regulate developmental or physiological phenotypes, such as

flowering time. Eliminating known developmental variation would

reduce the effects of developmental or physiological variation on

the metabolome, but it would not eliminate the potential for

metabolic variation to alter development or physiology.

Generating Metabolic Pathways via Logic Algorithms

Previous research suggested that natural metabolic variation

may be useful in predicting and cloning genes in metabolic

pathways (Kliebenstein et al., 2001b, 2001c, 2002b; Lambrix

et al., 2001; Kroymann et al., 2003; Benderoth et al., 2006;

Keurentjes et al., 2006; Wentzell et al., 2007). Within our QTL data

set, unknown metabolites were sometimes paired such that one

unknown was positively affected by a QTL while the other was

negatively affected by the same QTL (see Supplemental Data Set

6 online). Application of a logic-based approach to the QTL data

generated two putative biochemical networks (Figure 5). One

network involved the pentose phosphate and TCA cycles but

contained a number of unidentified metabolites. These unknown

metabolites may be intermediates in these pathways or altered

forms of known metabolites. The second network centered on

4-picolinate, a compound that has not been detected previously

within Arabidopsis. As such, further work is required to determine

whether this is a breakdown product of Lys biosynthetic inter-

mediates or it represents a new pathway for a previously unde-

tected metabolite.

The arrows linking metabolites in models generated by this

approach do not imply a single enzymatic step between these

metabolites. Nor do they imply that the QTL is caused by poly-

morphism within a single enzyme. As found for glucosinolates,

some major QTLs affect individual enzymes and also alter the

expression of the entire biosynthetic pathway (Wentzell et al.,

2007). Connection of metabolites by this approach indicates only

their potential relationship via enzymatic interconversion. This

relationship may be mediated by a single biosynthetic enzyme,

an entire pathway, or, as found with the AOP locus, opposing

reactions using the same unmeasured precursor (Figure 5B).

While specific relationships between metabolites are not re-

vealed, this approach allows the generation of new metabolic

hypotheses and provides an ability to link unknown metabolites

with known biosynthetic pathways through metabolomic QTLs.

Increasing the power of QTL detection and mapping precision

could greatly expand our ability to generate networks and

explore their relationships.

Glucosinolate Bias?

Research suggesting the utility of genomics and QTLs for path-

way generation has largely focused on the aliphatic glucosinolate

biosynthetic pathway within Arabidopsis (Kliebenstein et al.,

2001a, 2001c; Hirai et al., 2005, 2007; Keurentjes et al., 2006;

Hansen et al., 2007; Sønderby et al., 2007). Recent results show

altered sequence and gene expression polymorphism patterns

in this pathway, indicative of selective pressures driving the

formation and maintenance of structural diversity (Kliebenstein

et al., 2001b, 2001c, 2002b; Lambrix et al., 2001; Kroymann

et al., 2003; Benderoth et al., 2006; Keurentjes et al., 2006;

Wentzell et al., 2007; Kliebenstein, 2008). Closer analysis of

glucosinolate-associated unknown metabolites showed that

they had significantly elevated heritability in comparison with

the rest of the metabolites (glucosinolate metabolite heritability¼
35%, metabolomic average¼ 25%; P < 0.001), providing greater

detection power. Within Arabidopsis, this combination of high

QTL detection power and diversifying selection may be unique to

glucosinolate metabolites. Nevertheless, it appears that our logic

approach to network generation can be extended to other

metabolites, including unknowns (Figure 5). Other plant species

may possess at least one secondary metabolite pathway with

similar genetic characteristics to the glucosinolate pathway,

potentially allowing these specialized pathways to be rapidly

identified and characterized via similar genomics approaches.

Genetic Power

QTL studies frequently identify one or two large-effect QTLs per

trait, along with a suite of small-effect QTLs. It has been pro-

posed that creating a large number of small structured popula-

tions (<200 lines per parental pair) from a diverse set of germplasm

will allow the characterization of most large-effect QTLs in a

species. Our data, however, suggest that the average allelic ef-

fect is less limiting for QTL detection than is the number of recom-

bination events (Beavis, 1994, 1998). Several metabolite QTL

clusters were located <30 cM apart, diminishing our ability to

discern their independent effects on the metabolome (Figure 2).

The total genetic r2 explained by main-effect and epistatic QTLs

was on average <30%, suggesting the contribution of multiple

unidentified genetic loci with moderate phenotypic effects, as

found in a recent yeast eQTL study (Brem and Kruglyak, 2005).

Strikingly, focused analysis of the HIF195 genotypes identified a

large number of new metabolite QTLs not found in the 210 RILs,

with most showing moderate (20 to 50%) allelic substitution

effects (see Supplemental Data Set 8 online). The knowledge that

this locus, previously identified as a fructose QTL (Calenge et al.,

2006), alters additional metabolites may aid in the identification of

candidate genes with the potential to influence multiple metab-

olites.

The prevalence of pairwise and potentially higher order epis-

tases also diminishes QTL detection power in small to medium

populations. For instance, testing for a pairwise epistatic inter-

action splits the population into four genotypic classes versus

only two groups for a main-effect QTL. Fewer measurements per

genotypic class decrease statistical power. The potential impact

of epistasis is magnified by the existence of three-way epistasis,

such as found in this study (Figure 9). Reanalysis of total aliphatic

glucosinolate data from 403 Bay 3 Sha RILs identified three

different three-way interactions influencing >20% of trait varia-

tion (P < 0.001 for AOP 3 Elong 3 MYB28, AOP 3 Elong 3

GSL.ALIPH.III.15, and AOP 3 GSL.ALIPH.III.15 3 MYB28), while

no three-way interactions were detected in a previous study

using a 210 RIL subset of the same population (Wentzell et al.,

2007). This supports our hypothesis that higher order epistasis is

common in the Arabidopsis metabolome and highlights the need

for larger mapping populations to detect these interactions. This

high level of epistasis may be a consequence of the intercon-

vertability of metabolites within the metabolome, suggesting that
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epistasis might be of greater consequence in metabolomics than

transcriptomics.

Metabolite versus Transcript Heritabilities

Previous work had shown that for glucosinolates, the average

metabolite had a lower heritability than did the transcripts

encoding the biosynthetic pathway (Wentzell et al., 2007). This

GC-TOF-MS metabolomics data set shows that the Arabidopsis

metabolome as measured in the Bay 3 Sha RILs shows lower

heritability than the transcriptome (Figure 1). Published estimates

of technical error for the GC-TOF-MS and Affymetrix microarray

platforms suggest that differences in the level of phenotypic

variance explained are not caused predominantly by differ-

ences in measurement error between these two technologies

(Weckwerth et al., 2004b). Additionally, heritability for the puta-

tive glucosinolate-related metabolites detected by the GC-TOF-

MS platform (30%; Figure 6) was similar to the heritability for the

glucosinolates in these same lines as measured by HPLC in a

larger experiment using this same population (40%; Wentzell

et al., 2007), which further supports the notion that this difference

is not purely technical.

Differences in the genetic regulation of these two classes of

trait may be explained by the simple fact that transcripts are

functionally linked to potential DNA polymorphisms in their genes

or regulators and, as such, have less potential for the introduction

of biological noise between genetic variation and the measured

transcript variation. In comparison, the measured metabolite

variation requires a DNA polymorphism to be processed via

transcription and translation. This extra step may introduce more

biological noise. Another explanation for the difference in heri-

tability between transcripts and metabolites is that metabolites

are often interrelated, such that the atoms in one metabolite can

potentially be transferred to a different metabolite in relatively few

steps (Fell and Wagner, 2000; Jeong et al., 2000; Arita, 2004).

This metabolic interconnectedness may increase the effect of

small biological perturbations, introducing more noise in meta-

bolic networks than in corresponding transcripts. These possi-

bilities could be tested in a replicated experiment measuring

global transcripts and metabolites in a structured population in

the presence and absence of a controlled environmental pertur-

bation (Van Leeuwen et al., 2007). If the metabolic network

amplifies biological noise, then the genotype 3 environment

interaction term should be greater for metabolites than for global

transcripts.

METHODS

Plant Material and Experimental Conditions

Seeds for Arabidopsis thaliana accessions Bay, Sha, and the F8 gener-

ation of a Bay 3 Sha RIL population (Loudet et al., 2002) were obtained

from The Arabidopsis Information Resource (stock number CS57920;

www.arabidopsis.org). The advanced generation RILs were created by

single-seed descent from the F2 generation (Loudet et al., 2002). The RIL

(F8) plants and parental accessions were grown in a single growth

chamber and allowed to self-pollinate; sufficient seed was harvested

from individual plants to conduct our replicated experiments as well as a

previous microarray experiment utilized to map eQTL (Kliebenstein et al.,

2006; West et al., 2007).

We conducted two independent measurements of the Bay 3 Sha RIL

metabolites, separated by 2 months. Within each experiment, two plants

for each of 210 RILs, plus parental controls, Bay and Sha, were grown

using the growth chambers and conditions previously utilized for seed

production and eQTL studies (West et al., 2006). Briefly, seeds were sown

directly onto Premier ProMix B potting soil (Premier Brands) in 36-cell

(;125 cm3 soil volume per cell) flats and grown in controlled-environment

chambers at 208C with 8 h of light at 100 to 120 mE. Within an experiment,

two randomized blocks each contained one plant per RIL. Prior to

planting, seeds were imbibed and cold-stratified at 48C for 3 d to break

dormancy. Seedlings were thinned to one plant per cell at 7 d after

planting. At 6 weeks after germination, the plants were harvested and

extracted for metabolomics analysis.

Metabolomics Analysis

For each metabolomics sample, one leaf disc from each of two leaves per

plant was harvested, providing two leaf discs of ;20 mg total weight. All

harvesting started at subjective midday, finishing within 2 h. The harvest

order of the four blocks was randomized to minimize circadian effects.

Each plant was independently harvested and extracted as per published

protocols, providing a total of 840 samples, 24 for parental genotypes and

816 for the RILs (Weckwerth et al., 2004a, 2004b; Meyer et al., 2007). The

samples were stored dry at�808C until automated derivatization and GC-

TOF-MS analysis at the University of California Davis Genome Center

Metabolomics Facility (http://metabolomics-core.ucdavis.edu/; Fiehn

et al., 2005). Metabolite identity was determined by comparing retention

time and mass with the University of California Davis Genome Center

Metabolomics Facility metabolites database (http://fiehnlab.ucdavis.

edu/Metabolite-Library-2007/; Fiehn et al., 2005). This library contains

reference spectra for 713 known metabolites, generated by the analysis

of purified reference compounds. Metabolites not contained within this

library are listed as unknown or unidentified metabolites. This analysis

identified 636 putative metabolites within the entire experiment (see

Supplemental Data Set 1 online). After analysis, samples were subjected

to quality control by further analysis of samples with internal standard

values of >3 s from the experimental mean within a given experiment,

suggesting faulty derivatization or GC-TOF-MS analysis of that specific

sample. Given the number of samples, we chose 3 s rather than 2 s to

exclude only extreme (biologically improbable) outlier samples. Because

we had 210 lines with replication, the inclusion of 2 s outliers should have

minimally affected the overall outcome. Excluding real 2 s outliers

(caused by biology, not error) could significantly diminish the power of

the experiment. Outlier samples were then tested for poor extraction

quality by screening for samples with extreme (>3 s) outlier values for the

average accumulation of amino acids and TCA metabolites. The flagged

samples were distributed randomly among the RILs, suggesting that they

were outliers due to technical error rather than genetic segregation.

Removal of these samples from our analysis left a total of 769 metabolite

measurements across 210 lines.

Estimation of Heritability

We calculated estimates of broad-sense heritability (H) for each metab-

olite as H¼ s2
g/s2

p, where s2
g was the estimated metabolite level genetic

variance among different genotypes in this sample of 210 RILs or two

parental genotypes and s2
p was the phenotypic variance for a trait (Liu,

1998). To estimate heritability between the Bay and Sha parental geno-

types, we utilized the 371 metabolites detected in the parents in both

independent RIL experiments plus an additional 26 metabolites that were

detected in common between at least one of the two RIL experiments and

a third parental experiment (see Supplemental Data Set 2 online). This
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data set contained 18 biological replicates per parent (Bay and Sha): 6

replicates of each parent grown concurrently with each RIL experiment

and 6 replicates of each parent in a third experiment containing just the

parents.

Heritability within the RILs was estimated for the 371 metabolites

detected in both independent RIL experiments (see Supplemental Data

Set 3 online). This data set included four biological replicates for each of

the 210 RILs, permitting the estimation of heritability for each metabolite

within the RIL population. Similar information is provided for those

metabolites identified in only one of the two replicates, but these were

not used for heritability comparisons (see Supplemental Data Set 4

online). Metabolite H was compared with previously estimated heritability

values (West et al., 2007) for all transcripts using the same 210 lines.

QTL Analysis

The Bay 3 Sha RIL population has been genotyped previously (Loudet

et al., 2002), and additional markers were obtained from the expres-

sion QTL analysis (West et al., 2006) as well as for the GSL-AOP and

GSL-Elong loci (Kliebenstein et al., 2001b, 2002b; Textor et al., 2004;

Benderoth et al., 2006; Wentzell et al., 2007). To detect metabolomic

QTLs, we utilized the average metabolite accumulation per RIL across all

experiments (see Supplemental Data Set 5 online). We tested only the 557

metabolites present in at least 5% of the RILs for QTLs. Seventy-five

percent of those metabolites were detected in at least 25% of the RILs,

with 232 of the metabolites detected in >90% of the RILs. There was a

slight positive but insignificant correlation between the number of RILs in

which a metabolite occurred and the number of QTLs identified for that

metabolite (P ¼ 0.08, r2 ¼ 0.04), suggesting that including metabolites

present in a minority of RILs did not introduce significant bias.

The average per RIL accumulation for each metabolite was used to

map QTLs within Windows QTL Cartographer version 2.5 (Basten et al.,

1999; Zeng et al., 1999; Wang et al., 2006). CIM was implemented using

Zmap (model 6) with a 10-cM window and an interval-mapping increment

of 1 cM. Forward regression was used to identify five cofactors per me-

tabolite trait. The declaration of statistically significant QTLs was based

on permutation-derived empirical thresholds using 1000 permutations for

each trait mapped (Churchill and Doerge, 1994; Doerge and Churchill,

1996). CIM using permutations to assign significance based on the

underlying trait distribution is robust at handling normal or nearly normal

trait distributions (Rebai, 1997), as found for most of our metabolites. The

Eqtl module of QTL Cartographer identified the location, additive effect,

and 1-logarithm of odds interval of each significant QTL for each trait (see

Supplemental Data Set 6 online) (Wang et al., 2006).

QTL clusters were identified using a QTL summation approach in which

the position of each QTL for each trait 3 experiment combination was

indicated by a 1 and the number of traits regulated by a QTL at a given

position was summed (Kliebenstein et al., 2006). This summation was

conducted within a 10-cM sliding window. Permutation analysis with

1000 permutations determined a cluster size of 12 metabolite QTLs as the

threshold for cluster significance (a ¼ 0.05) (West et al., 2007). The QTL

clusters identified defined genetic positions that were named with re-

spect to their positions using the Arabidopsis Genome Initiative code of

the marker closest to the peak. The last three digits of the Arabidopsis

Genome Initiative code were removed to avoid confusion with the specific

gene and to highlight that it was an approximate position. The QTLs

detected at the previously characterized and cloned AOP and Elong loci

were named as such (Magrath et al., 1994; Kliebenstein et al., 2001a,

2001b; Kroymann et al., 2003).

Metabolite QTL Hot Spot ANOVA

To test directly the effect of each identified QTL cluster on all metabolites,

we used an ANOVA model containing the markers most closely associ-

ated with each of the 11 significant metabolite QTL clusters as individual

main-effect terms. For each metabolite, the average accumulation in lines

of genotype g at marker m was shown as ygm. The model for each

metabolite was as follows:

ygm ¼ mþ+
2

g¼1
+

11

m¼1
Mmg þ egm;

where g¼Bay or Sha and m¼ 1, . . .,11. The main effect of the 11 markers

was denoted as M. The error, egm, was assumed to be normally distrib-

uted, with mean 0 and variance se
2. An automated SAS script tested all

metabolites within the model and returned all P values, type III sums-of-

squares for the complete model and each main effect, and QTL main-

effect estimates (in terms of allelic substitution values) (see Supplemental

Data Set 8 online). Significance values were corrected for multiple testing

within each model using FDR < 0.05 in the automated script.

Logic Algorithm for Pathway Generation

To identify putative biochemical associations between metabolites, we

utilized a logic algorithm. This logic algorithm first compartmentalized all

metabolites into bins based on the metabolites having QTL peaks no

farther apart than 2 cM, based on the QTL Cartographer output (see

Supplemental Data Set 6 online). Assuming that a single locus is affecting

the metabolites at a given QTL, that the metabolites are measured in the

same samples, and that all statistics are performed with the same marker

genotypes, the QTL peaks caused by a single locus should be very tightly

linked. The bins were then tested for the presence of metabolites with

allelic effects in the opposite direction, and only those containing me-

tabolites with opposite allelic effects were kept. We then required the

average absolute value of the allelic substation effect within a bin to be

>25%, using the glucosinolate QTLs as guides to set this threshold.

Maintaining the threshold at this level allowed us to focus on the larger

effect QTLs. Omitting this threshold led to the presence of more bins and

a more complicated biochemical network but did not destroy the

presented networks. This generated a list of potential biochemical

associations between metabolites (see Supplemental Data Set 6 online).

To generate pathways, we identified metabolites present in multiple bins

and used them to link metabolites into potential biochemical pathways.

All QTL information used to generate these putative networks was

statistically validated as described in the QTL section. This approach

provided a putative network that allowed the inclusion of known and

unknown metabolites.

Metabolite QTL Epistasis Analysis

To test directly for epistatic interactions between the metabolite QTL

clusters, we conducted an ANOVA using a model containing all 11

metabolite QTL clusters as individual main-effect terms using the markers

most closely associated with each significant QTL cluster. Additionally,

we tested all 55 possible pairwise interactions between these markers.

For each metabolite, the average accumulation in lines of genotype g at

marker m was shown as ygm. The model for each metabolite was as

follows:

ygm ¼ mþ+
2

g¼1
+

11

m¼1
Mgm þ+

2

g¼1
+

11

m¼1
+

11

n¼mþ1
MgmMgn þ egmn;

where g¼ Bay or Sha, m¼ 1, . . .,11, and n was the identity of the second

marker for an interaction. The main effect of the 11 markers was denoted

as M. The error, egmn, was assumed to be normally distributed with mean

0 and variance se
2. An automated SAS script was developed to test all

metabolites within this ANOVA and return all P values, type III sums-of-

squares for the complete model and each individual term, and QTL

pairwise effect estimates in terms of allelic substitution values (see

Supplemental Data Sets 9 and 10 online). Pairwise interactions were
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defined as having a significant epistatic cluster if they affected >5%

of the tested metabolites. Significance values were corrected for

multiple testing within a model using FDR < 0.05 in the automated

script.

To quantify the epistatic interactions, we adapted an approach utilized

to quantify epistatic interactions altering fitness (Elena and Lenski, 1997;

Segre et al., 2005). For fitness, nonscaled epistasis is measured as e ¼
WXY – WXWY, where WX and WY are the fitness values of the single

mutants and WXY is the fitness of the double mutant. Fitness was

measured as the ratio of growth between the mutant genotype and the

wild type. We adapted this measure of epistasis to quantify the epistasis

for each metabolite’s accumulation as regulated by two QTLs, X and Y, so

that e ¼MXY – MXMY. MX represented the ratio of a metabolite’s average

accumulation in the RILs containing a Sha allele at QTL X and a Bay allele

at QTL Y to the average metabolite accumulation in the RILs containing a

Bay allele at both QTLs. Conversely, MY was the ratio of a metabolite’s

average accumulation in the RILs containing a Bay allele at QTL Y and a

Bay allele at QTL X to that metabolite’s average accumulation in the RILs

containing a Bay allele at both QTLs. MXY was the ratio of a metabolite’s

average accumulation in the RILs containing a Sha allele at both QTLs to

the metabolite’s average accumulation in the RILs containing a Bay allele

at both QTLs. The sign of e was independent of which parental genotype

was used in the denominator. Negative values of e indicated negative

epistasis, whereby the recombinant progeny had lower metabolite ac-

cumulation than the parental genotypes. Positive e showed positive

epistasis, whereby the recombinant progeny had greater metabolite

accumulation than the parental genotypes (Elena and Lenski, 1997;

Segre et al., 2005).

To test the three main TCA cycle QTLs for a three-way epistatic

interaction regulating the TCA cycle, we conducted an ANOVA using a

model containing all 11 main-effect terms, all 55 pairwise interactions,

and a single three-way epistatic term. An automated SAS script then

individually tested the eight detected metabolites central to the TCA cycle

against the combined model. The script returned all P values, type III

sums-of-squares for the complete model and each individual term, and

means for the eight genotypic classes in the three-way epistatic interac-

tion. Significance values were corrected for multiple testing within a

model using FDR < 0.05 in the automated script. Analyzing all other

metabolites with the same model detected no additional metabolites

showing this significant three-way interaction.

HIF195 Analysis

The Bay and Sha lines for HIF195 (http://dbsgap.versailles.inra.fr/vnat/)

had been developed previously and utilized to validate a fructose QTL

(http://dbsgap.versailles.inra.fr/portail/; Calenge et al., 2006). We ob-

tained six independent maternal seed sets for each genotype to control

for maternal effects on metabolite accumulation. The lines were grown

and analyzed for metabolite accumulation as described above, in a

randomized complete block design with two blocks and two plants per

line. Metabolites were measured for 24 samples per genotype. We used

ANOVA to test for differences between the Bay and Sha genotypes of

HIF195. For each metabolite, the accumulation in genotype g from line l

in block j was denoted as yglj. The model for each metabolite was as

follows: yglj ¼ mþ Gg þ G(L)glj þ eglj, where g ¼ Bay or Sha, l ¼ 1, . . .,6,

and j ¼ 1, 2. The main effects, G and L, represented genotype and

maternal line per genotype, respectively. The error, eglj, was assumed to

be normally distributed, with mean 0 and variance se
2. An automated

SAS script individually tested all metabolites for altered accumulation

between the HIF195 genotypes. The script returned all P values, type III

sums-of-squares for the complete model and each individual term, and

means for the two HIF195 genotypes (see Supplemental Data Set 7

online).
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