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Úrsula Flores-Pérez,a,b,1 Susanna Sauret-Güeto,b,1,2 Elisabet Gas,a,b Paul Jarvis,c
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The plastid-localized methylerythritol phosphate (MEP) pathway synthesizes the isoprenoid precursors for the production

of essential photosynthesis-related compounds and hormones. We have identified an Arabidopsis thaliana mutant, rif1, in

which posttranscriptional upregulation of MEP pathway enzyme levels is caused by the loss of function of At3g47450, a gene

originally reported to encode a mitochondrial protein related to nitric oxide synthesis. However, we show that nitric oxide is

not involved in the regulation of the MEP pathway and that the encoded protein is a plastid-targeted homolog of the Bacillus

subtilis YqeH protein, a GTPase required for proper ribosome assembly. Consistently, in rif1 seedlings, decreased levels of

plastome-encoded proteins were observed, with the exception of ClpP1, a catalytic subunit of the plastidial Clp protease

complex. The unexpected accumulation of ClpP1 in plastids with reduced protein synthesis suggested a compensatory

mechanism in response to decreased Clp activity levels. In agreement, a negative correlation was found between Clp

protease activity and MEP pathway enzyme levels in different experiments, suggesting that Clp-mediated degradation of MEP

pathway enzymes might be a mechanism used by individual plastids to finely adjust plastidial isoprenoid biosynthesis to their

functional and physiological states.

INTRODUCTION

Plastids are arguably the most distinctive organelles of plant

cells. Besides the central importance of chloroplasts for photo-

synthesis, and therefore for life on earth as we know it, plastids

harbor essential metabolic pathways that occur uniquely in plants

among eukaryotes. A good example is the 2-methylerythritol

4-phosphate (MEP) pathway for the biosynthesis of isoprenoid

precursors (Rodrı́guez-Concepción and Boronat, 2002; Eisenreich

et al., 2004). Isoprenoids with primary (essential) roles in cell

architecture, respiration, and regulation of growth and develop-

ment are synthesized in all living organisms, but plant cells also

produce an astonishing diversity of isoprenoid compounds for

photosynthesis-related processes and as secondary metabo-

lites that influence interactions with their environment. Most

organisms have only one of the two currently known pathways

for the biosynthesis of the prenyl diphosphate precursors of all

isoprenoids, isopentenyl diphosphate (IPP) and its isomer dime-

thylallyl diphosphate (DMAPP). Thus, IPP and DMAPP are made

exclusively from mevalonic acid (MVA) in archaebacteria, fungi,

and animals, whereas most eubacteria (including cyanobacteria,

the ancestors of plant plastids) only use the MEP pathway. By

contrast, plants use both the MVA and MEP pathways, although

in different cellular compartments (Lichtenthaler, 1999). Sterols,

brassinosteroids, triterpenes, some sesquiterpenes, polyter-

penes, and dolichol are formed from cytosolic prenyl diphos-

phates derived from the MVA pathway. On the other hand, the

plastid-localized MEP pathway synthesizes the precursors for

photosynthesis-related compounds (carotenoids and the side

chain of chlorophylls, tocopherols, phylloquinones, and plasto-

quinones), hormones (gibberellins and abscisic acid), isoprene,

monoterpenes, and some sesquiterpenes (Figure 1). Although

some exchange of prenyl diphosphates can take place between

the cytosol and the plastid in at least some plants, including

Arabidopsis thaliana (Kasahara et al., 2002; Nagata et al., 2002;

Laule et al., 2003), the block of one of the two pathways in

seedlings cannot be rescued with common isoprenoid precur-

sors synthesized by the other pathway under normal growth

conditions (Gutierrez-Nava et al., 2004; Rodrı́guez-Concepción

et al., 2004). Pathway- and compartment-specific regulatory

mechanisms, therefore, must be present in plant cells to ensure

that isoprenoid precursors are supplied when needed in each

subcellular location.

Plant MEP pathway enzymes are encoded by nuclear genes

and imported into plastids (Rodrı́guez-Concepción and Boronat,
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2002; Eisenreich et al., 2004). 1-Deoxyxylulose 5-phosphate

(DXP) synthase (DXS) catalyzes the first reaction of the pathway,

the production of DXP from the central metabolic intermediates

glyceraldehyde 3-phosphate and pyruvate. MEP is synthesized

from DXP in the next step of the pathway, catalyzed by DXP

reductoisomerase (DXR). Several enzymatic steps transform

MEP into 1-hydroxy 2-methylbutenyl 4-diphosphate (HMBPP),

which is finally converted by the enzyme HMBPP reductase

(HDR) into a mixture of IPP and DMAPP (Figure 1). DXS, DXR,

and HDR activities have been shown to share control over the

metabolic flux of the MEP pathway (Estévez et al., 2001;

Mahmoud and Croteau, 2001; Botella-Pavı́a et al., 2004; Enfissi

et al., 2005; Carretero-Paulet et al., 2006). Besides the coarse

control exerted by changes in the expression of genes encoding

the biosynthetic enzymes in response to developmental, environ-

mental, and metabolic signals (Rodrı́guez-Concepción, 2006),

recent reports have demonstrated that enzyme levels are regu-

lated at posttranscriptional levels (Guevara-Garcia et al., 2005;

Sauret-Güeto et al., 2006). The molecular mechanisms involved

in such regulation, however, remain to be established.

Growth of Arabidopsis seedlings in the presence of fosmido-

mycin (FSM), a strong competitive inhibitor of DXR (Figure 1),

results in a specific block in the biosynthesis of MEP-derived

plastid isoprenoids such as chlorophylls and carotenoids (re-

quired for photosynthesis and photoprotection), eventually caus-

ing a bleached phenotype and a developmental arrest that can

be rescued by upregulating DXS and/or DXR levels (Rodrı́guez-

Concepción et al., 2004; Guevara-Garcia et al., 2005; Carretero-

Paulet et al., 2006; Sauret-Güeto et al., 2006). Our screening for

Arabidopsis rif (for resistant to inhibition by FSM) lines able to

develop in the presence of this inhibitor resulted in the unex-

pected isolation of several pale mutants, including rif10 (Sauret-

Güeto et al., 2006). Impaired plastid RNA processing in rif10

plants and reduced protein synthesis in chloroplasts resulted in

a posttranscriptional accumulation of DXS and DXR proteins

and FSM resistance (Sauret-Güeto et al., 2006). By contrast,

other processes affecting plastid development and causing a

pale phenotype did not result in FSM resistance (Sauret-Güeto

et al., 2006). The link between an altered production of plastid

proteins and a posttranscriptional accumulation of nucleus-

encoded MEP pathway enzymes in plastids has not been ex-

plored yet.

A number of albino, pale, and variegated mutants with defects

in chloroplast development have been identified that affect a

variety of plastid functions, mostly related to import and pro-

cessing of nucleus-encoded proteins, expression of the plastid

genome (plastome), and photosynthesis (López-Juez, 2007).

Additionally, results from mutant screens suggest that a large

number of genes with unknown function or unsuspected plastid

relevance still remain to be identified as essential for chloroplast

development (Budziszewski et al., 2001). An arrest in plastid

development is also observed when the MEP pathway is blocked

by FSM treatment or in mutants with defective biosynthetic

genes, resulting in proplastid-like organelles with rudimentary

thylakoids and an accumulation of vesicle structures, very low

levels of photosynthetic pigments, and little or no expression of

nuclear and plastidial genes required for chloroplast function

(Mandel et al., 1996; Nagata et al., 2002; Gutierrez-Nava et al.,

2004). Our previous results (Sauret-Güeto et al., 2006) provided

strong evidence that proteins encoded by plastidial genes

might in turn modulate the accumulation of flux-controlling

MEP pathway enzymes within plastids. Plastome-encoded pro-

teins include components of the plastidial gene expression

machinery and photosynthetic apparatus and a few other poly-

peptides, including one of the catalytic subunits of the stromal

Clp protease complex (Wakasugi et al., 2001; Adam et al., 2006).

To gain a deeper insight into the mechanisms that regulate

the levels of flux-controlling MEP pathway enzymes, we have

characterized another FSM-resistant mutant with a pale pheno-

type, rif1. Mutant rif1 plants show a posttranscriptional upregu-

lation of DXS and DXR caused by the loss of function of the

At3g47450 gene, originally reported to encode a mitochondrial

protein related to nitric oxide synthesis. However, we demon-

strate here that RIF1 is a plastidial protein and that nitric oxide is

not involved in the regulation of the MEP pathway. Our data

indicate that the RIF1 protein is most likely required for plastid

ribosome assembly, confirming that defective expression of the

plastid genome eventually results in the upregulation of MEP

pathway enzyme levels. We also show that the mechanism

responsible for such upregulation involves the stromal Clp pro-

tease complex and protein degradation within the plastid.

RESULTS

Loss of Function of the At3g47450 Gene Causes a

Posttranscriptional Upregulation of MEP

Pathway Enzymes

As reported for rif10 (Sauret-Güeto et al., 2006), mutant rif1

seedlings show pale cotyledons and a clearly delayed develop-

ment and greening of true leaves compared with the Columbia

(Col) wild type (Figures 2A to 2F), eventually resulting in smaller

plants with a characteristic virescent phenotype of pale young

leaves (those in the inner whorls of the rosette) but green mature

leaves (Figures 2G and 2H). The rif1 mutant also showed a strong

Figure 1. Isoprenoid Biosynthesis in Plastids.

Dashed arrows represent multiple enzymatic steps. ABA, abscisic acid;

GAP, glyceraldehyde 3-phosphate. MEP pathway enzymes (in boldface)

are DXS, DXR, and HDR. The step inhibited by FSM is indicated.
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resistance to FSM (see Supplemental Figure 1 online). As a

result, most rif1 seedlings remained virtually unaltered in the

presence of FSM at concentrations that are lethal for the Col wild

type (Figures 2A to 2D). Real-time quantitative RT-PCR exper-

iments and immunoblot analyses showed that the FSM-resistant

phenotype of rif1 seedlings likely results from the accumulation

of increased levels of DXS (1.5-fold) and DXR (almost 2-fold)

proteins in mutant plastids without changes in gene expression

(Figure 3).

Backcrossing of homozygous rif1 plants with the Col wild type

followed by analysis of the offspring showed that all of the

phenotypes described above were recessive and linked to the

Figure 2. Phenotypes of rif1 Plants and Complemented Lines.

Wild-type (Col) and transgenic lines were germinated on MS plates supplemented or not with 50 mM FSM and grown under long-day conditions. Plants

grown in the absence of inhibitor for 15 d were then transferred to soil and grown under long days until completing their life cycle. Representative

individuals at different developmental stages are shown. Panels in each row are to the same scale.

(A) to (D) Five-day-old Col ([A] and [B]) and rif1 ([C] and [D]) seedlings grown without FSM ([A] and [C]) or with FSM ([B] and [D]).

(E) and (F) Ten-day-old Col (E) and rif1 (F) plants grown on MS plates.

(G) to (I) One-month-old plants from Col (G), rif1 (H), and a transgenic rif1 line constitutively overexpressing a RIF1-GFP fusion protein (I) grown on soil.

(J) to (L) Young leaves from the complemented mutant line shown in (I) were used for confocal microscopy to detect the green fluorescence of RIF1-

GFP (J) and the red autofluorescence of chlorophyll (K) in the same area of the leaf. Images were merged to show overlapping green and red

fluorescence in yellow (L). Bars ¼ 50 mm.
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presence of the T-DNA used to generate the activation-tagging

lines (Weigel et al., 2000). A wild-type phenotype was observed

in all F1 individuals resulting from the cross of homozygous rif1

and rif10 plants, indicating that they were not alleles but cor-

responded to different genes. Sequencing of the T-DNA–flanking

sequences in the rif1 genome showed that the T-DNA was

inserted in the last exon of the At3g47450 gene (Figure 4A). Other

insertion alleles identified in the Salk collection (SALK_047882;

herein named rif1-2) and the Cold Spring Harbor Laboratory Ds-

GeneTrap lines (GT6235; herein named rif1-3) displayed the

same phenotypes reported for the original rif1 mutant (renamed

rif1-1), including a developmental delay, pale green cotyledons,

and FSM resistance (Figure 4B). Furthermore, transformation

of homozygous rif1-1 plants with a construct to constitutively

express the full-length At3g47450 cDNA fused to green fluores-

cent protein (P35S:RIF1-GFP) completely restored the wild-type

phenotype (Figures 2I and 4B), confirming that all of the distinc-

tive phenotypes described here for rif1 are indeed due to the loss

of function of this gene.

The protein encoded by the At3g47450 gene was originally

reported to function as a nitric oxide (NO) synthase (NOS1) in

Arabidopsis (Guo et al., 2003), but concerns about the proposed

synthase activity of the protein led to its later being renamed

NOA1 for NITRIC OXIDE–ASSOCIATED1 (Crawford et al., 2006;

Zemojtel et al., 2006a). The pale phenotype and delayed growth

of the loss-of-function nos1 mutant (our rif1-2 allele) was rescued

by treating seedlings with sodium nitroprusside (SNP), a NO

donor (Guo et al., 2003). If defective production of NO was also

responsible for the enhanced accumulation of active DXS and

DXR proteins detected in the mutant, it was expected that

treatment of rif1 seedlings with SNP would result in wild-type

levels of these enzymes and FSM sensitivity. Growth of rif1-1

seedlings on SNP-supplemented plates resulted in a partial

rescue of the pale phenotype (Figure 5A). However, no significant

changes were detected in the resistance to FSM (Figure 5A) or

the levels of DXR protein (Figure 5B) compared with untreated

controls or seedlings treated with the same concentration of

sodium ferrocyanide (SFC; a SNP analog that does not produce

NO). FSM resistance of the rif1-1 line was higher than that of Col

seedlings at all of the concentrations of SNP tested up to 150 mM.

Higher concentrations of SNP or SFC negatively influenced

seedling growth. These results indicate that the posttranscrip-

tional upregulation of MEP pathway enzymes in rif1 is not caused

by a defect in the production of NO.

The RIF1 Protein Is Likely Required for Ribosome

Function in Plastids

RIF1 bears similarity to P-loop GTP binding proteins of the YlqF/

YawG family containing a circularly permuted GTPase domain

(Leipe et al., 2002). Comparison of representative members of

the different subfamilies described for the YlqF/YawG family and

homologous Arabidopsis proteins (Figure 4C; see Supplemental

Figure 2 online) showed that RIF1 is most similar to the Bacillus

subtilis YqeH protein, recently shown to be required for the

correct formation of the bacterial 70S ribosome and the assem-

bly or stability of the small (30S) ribosomal subunit (Uicker et al.,

2007). Overall similarity and identity percentages are relatively

Figure 3. Analysis of Gene Expression and Protein Levels of MEP

Pathway Enzymes in rif1 Seedlings.

RNA and protein were extracted from 5-d-old Col and rif1 seedlings

grown on MS plates under long-day conditions.

(A) Real-time quantitative RT-PCR analysis of transcript levels of the

indicated genes in wild-type and mutant seedlings. Levels are repre-

sented relative to those in Col seedlings and correspond to the mean and

SD from duplicate PCR analyses of two independent experiments.

(B) Immunoblot analysis with antibodies against DXS and DXR. The

position of the DXR protein (Sauret-Güeto et al., 2006) is indicated with

an arrowhead. The other major band recognized by the anti-DXR serum

is shown as a protein-loading control. Coomassie blue (C-Blue) staining

was also used to monitor total protein loading. The arrow marks the

position of the RBCL protein.

(C) Quantification of DXS and DXR protein levels in Col and rif1 seedlings

from immunoblot band intensity. Levels were normalized to those of the

unspecific band recognized by the anti-DXR serum and are represented

relative to the level in Col. Mean and SE from duplicate blots of three

independent experiments are represented.
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low (23 and 33%, respectively), but they are higher when only

conserved domains are considered (46% similar at the GTP

binding domain and 39% similar at the putative Zn binding

domain; see Supplemental Figure 2 online). The RIF1 protein

contains an N-terminal domain that is absent from the bacterial

YqeH protein and shows features of organellar targeting pep-

tides (see Supplemental Figure 2 online). A GFP-tagged version

of the full-length Arabidopsis RIF1/NOS1/NOA1 protein was

previously found to be targeted to mitochondria in roots of stably

transformed plants (Guo and Crawford, 2005). Using a similar

P35S:RIF1-GFP construct, a wild-type phenotype (including

FSM sensitivity) was fully restored in transgenic rif1-1 seedlings

(Figure 4B) and adult plants (Figures 2G to 2I). However, we were

unable to detect any green fluorescence from the biologically

active RIF1-GFP fusion protein in mitochondria of roots of any of

the transgenic lines generated. Analysis of photosynthetic tis-

sues (cotyledons and leaves) also failed to reveal GFP fluores-

cence in mitochondria, but a clear signal was found in organelles

identified as chloroplasts because of their size and chlorophyll

autofluorescence (Figures 2J to 2L). Furthermore, untagged RIF1

was efficiently imported into isolated wild-type chloroplasts in

vitro (Figure 4D), demonstrating that plastid targeting is an

intrinsic feature of this protein and not an artifact caused by

overexpression and/or GFP fusion.

To investigate whether RIF1 and YqeH were functional homo-

logs and to confirm whether a plastidial localization of the protein

was required to rescue the rif1 phenotype, a sequence encoding

the bacterial protein fused to GFP was cloned in-frame with the

plastid-targeting peptide of the MEP pathway HDS/GCPE pro-

tein (Querol et al., 2002) and constitutively expressed in mutant

rif1-1 plants. As shown in Figure 4B and Supplemental Figure 3

online, the plastid-localized P-YqeH-GFP protein was able to

Figure 4. Analysis of the Gene Mutated in rif1 and the Encoded Protein.

(A) Map of the coding region of the At3g47450 gene showing the transcription start (arrow), the exons (boxes), and the positions of the T-DNA in rif1-1,

rif1-2, and rif1-3 mutants. Untranslated region sequences are represented in gray. Bar ¼ 0.1 kb.

(B) Chlorophyll autofluorescence of 6-d-old seedlings of the indicated genotype grown on MS plates with (þ) or without (�) 50 mM FSM. Representative

individuals of transgenic rif1-1 plants constitutively expressing the fusion protein RIF1-GFP (RIF1G) or a plastid-targeted bacterial YqeH protein fused to

GFP (PYG) are included. All panels are to the same scale.

(C) Phylogenetic tree of putative GTPases of the YlqF/YawG family identified in Arabidopsis. Representative members of each proposed subfamily

(Leipe et al., 2002) are also included: B. subtilis YqeH and YlqF, Escherichia coli YjeQ, Methanococcus jannaschii MJ1464, and Schizosaccharomyces

pombe YawG.

(D) In vitro import of DXR and RIF1 into wild-type chloroplasts. Import of in vitro-translated labeled DXR (used as a positive control) and RIF1 preproteins

(positions marked with asterisks) was allowed to proceed for 10 min, and then the samples were either treated (þ) or not (�) with thermolysin to remove

nonimported proteins and analyzed by SDS-PAGE and fluorography. An aliquot of the input translation mixture was also included. The positions of the

mature proteins (i.e., processed to remove the transit peptide after import into chloroplasts) are marked with arrowheads.
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complement the greening and growth defects of rif1-1 seedlings

and to restore FSM sensitivity. These results confirm that the

bacterial YqeH protein has a similar biochemical function as RIF1

and that the rif1 phenotype is due to a deficiency of this activity in

the plastid.

Defective Development of Plastids in rif1 Seedlings

Correlates with a General Decrease in Plastome-Encoded

Protein Synthesis

The results shown above indicate that the main biological func-

tion of RIF1 takes place in plastids, presumably in ribosome

assembly. As a first approach to investigate whether plastid

function was altered in the mutant, ultrathin sections of cotyle-

dons from Col and rif1-1 seedlings grown in the dark (etiolated) or

under long-day conditions for 3 d were examined using trans-

mission electron microscopy (Figure 6). Etioplasts with a char-

acteristic prolamellar body were observed in etiolated Col

seedlings (Figure 6A) but not in rif1 seedlings, which only har-

bored small rounded plastids with plastoglobuli-like vesicles that

in some cells developed into elongated plastids with rudimentary

membranous structures (Figures 6B and 6C). When compared

with the wild type, chloroplasts of light-grown rif1 seedlings were

smaller, more irregularly shaped, and showed a general reduc-

tion in the development of thylakoid membranes and granal

stacks (Figures 6D and 6E). Similar features were observed in leaf

chloroplasts (see Supplemental Figure 4 online). By contrast,

mitochondrial ultrastructure showed no apparent differences

between Col and rif1 seedlings in any of the tissues or growing

conditions analyzed (Figure 6; see Supplemental Figure 4 online).

These results demonstrate that defects in the development and

differentiation of different types of plastids (etioplasts and chlo-

roplasts), but not mitochondria, result from the loss of RIF1

function.

Assuming that the main role of RIF1 in Arabidopsis plastids is

related to its ability to influence ribosome activity, as suggested

by complementation analysis (Figure 4B; see Supplemental

Figure 3 online), it is predicted that altered ribosome function in

rif1 mutant plastids could result in defects in protein translation,

eventually leading to decreased levels of plastome-encoded

proteins. Consistently, the levels of the ribulose-1,5-bisphos-

phate carboxylase/oxygenase large subunit (RBCL) detected by

Coomassie blue staining after SDS-PAGE of protein extracts

were much lower in rif1 than in Col seedlings (Figures 3 and 7).

Immunoblot analysis of Col and rif1 seedling extracts with

specific antibodies against the plastome-encoded proteins

AtpB (for ATPase b chain) and PsbA (for photosystem II protein

D1) confirmed a decreased production of plastome-encoded

proteins in the absence of RIF1 function (Figure 7). As expected,

similar reductions were observed in seedlings of the rif10 mutant,

which is defective in plastidial RNA processing (Sauret-Güeto

et al., 2006), and in Col seedlings grown in the presence of

sublethal concentrations of chloramphenicol (CAP), an inhibitor

of plastid protein synthesis. In all cases, partially impaired

synthesis of plastome-encoded proteins correlated with con-

comitantly upregulated DXR levels (Figure 7), confirming our

previous observations (Sauret-Güeto et al., 2006).

Homeostasis of DXS and DXR Levels Is Controlled by the

Plastidial Clp Protease Complex

The discovery that the expression of the plastid genome is

impaired in the rif1 mutant and causes similar phenotypes to

those described for the rif10 mutant and CAP-treated wild-type

seedlings (Sauret-Güeto et al., 2006) confirms a link between

plastome-encoded proteins and the regulation of MEP pathway

enzyme levels in plastids. Most of the ;100 genes found in the

plastid genome encode proteins of the photosynthetic appa-

ratus and the transcription/translation system. The only plas-

tome genes of known function in higher plants that fall out of

these established groups encode enzymes (accD and ccsA) and

ClpP1, a catalytic component of the plastidic ATP-dependent

Clp protease (Wakasugi et al., 2001). Since the Clp protease

has been proposed to target nucleus-encoded chloroplast-

imported proteins (Sjögren et al., 2006) and decreased

Figure 5. Putative Role of NO in the Regulation of the MEP Pathway.

(A) Representative photographs of Col and rif1-1 seedlings germinated

and grown for 5 d on MS plates containing a NO donor (50 mM SNP) or a

NO donor analog as a control (50 mM SFC) and either supplemented (þ)

or not (�) with 50 mM FSM.

(B) Immunoblot analysis of DXR levels in samples grown without FSM as

described for (A). The position of the DXR protein is indicated with an

arrowhead. The unspecific band recognized by the antibody is also

shown as a loading control.
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proteolytic degradation might be a plausible explanation for the

increased levels of MEP pathway enzymes in rif1 plastids, we

aimed to analyze the role of ClpP1 and the plastidic Clp pro-

tease complex in the posttranscriptional regulation of the MEP

pathway.

Unexpectedly, the levels of plastome-encoded ClpP1 protein

were not reduced but increased in mutant rif1 and rif10 and in

CAP-treated Col seedlings compared with untreated wild-type

controls (Figure 7). ClpP1 together with four more Ser-type

proteases (ClpP3 to ClpP6) and four related nonproteolytic

proteins (ClpR1 to ClpR4) form the catalytic core of the Clp

complex. Because the formation of a functionally active Clp

protease relies on the correct stoichiometry of each of these

subunits (Sjögren et al., 2006), the observed upregulation of

ClpP1 in response to an impaired expression of the plastome

might be a compensatory response to the inability to form

sufficient active stromal Clp protease (Sjögren et al., 2004). To

confirm whether a reduction in the activity of the plastidial Clp

proteolytic complex had an effect on MEP pathway enzyme

levels and FSM resistance, we used the publicly available clpr1-2

mutant (SALK_088407), in which the loss of function of nucleus-

encoded ClpR1 causes a reduction of other ClpPR subunits,

including ClpP1 (Koussevitzky et al., 2007). As shown in Figure 8,

clpr1-2 seedlings showed a clear FSM resistance phenotype and

Figure 6. Ultrastructure of Plastids in Wild-Type and rif1-1 Cotyledons.

Seedlings were germinated and grown on MS plates in the dark (etiolated) or under long-day conditions for 3 d, and cotyledons were then examined by

transmission electron microscopy. Mitochondria are indicated with arrowheads. Bars ¼ 0.5 mm in (A) to (C) and 1 mm in (D) and (E).

(A) Etiolated Col seedling. The prolamellar body is clearly visible in the central-right area of the etioplast.

(B) and (C) Etiolated rif1 seedling. Plastids lack a prolamellar body and contain electrodense plastoglobuli-like vesicles.

(D) Light-grown Col seedling.

(E) Light-grown rif1 seedling.
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a posttranscriptional increase in the levels of DXS and DXR

compared with wild-type siblings, supporting a role of the

plastidic Clp protease complex in the degradation of these

MEP pathway enzymes. Because stromal substrates of the

plastidic Clp machinery are reportedly more abundant in devel-

oping chloroplasts of young expanding leaves (Sjögren et al.,

2006), we next compared the levels of DXS and DXR proteins in

young leaves of the inner whorls of the rosettes of 3-week-old Col

plants with those in fully expanded leaves of the outer whorl.

Immunoblot analyses showed that DXS and DXR were much

more abundant in younger leaves, whereas no differences were

observed at the transcript level (Figure 8), providing additional

evidence that the stromal Clp protease could be involved in the

degradation of MEP pathway enzymes in functional wild-type

chloroplasts.

To further investigate whether DXS and DXR could be sub-

strates for the plastidic Clp protease complex, we performed an

in vivo degradation assay as described (Sjögren et al., 2006) and

compared the stability of these stromal proteins in wild-type and

mutant rif1 chloroplasts. Intact chloroplasts were incubated in

the light with ATP, and samples were taken at different time

points for immunoblot analysis. Figure 9 shows that both DXS

and DXR proteins were degraded at a lower rate in mutant rif1

chloroplasts. As a result, the ratio of DXS levels in mutant versus

wild-type chloroplasts was increased by 60% after 1 h of incu-

bation in degradation buffer (from 1.5 to 2.4). A similar increase

(65%, from 2.0 to 3.3) was observed for DXR (Figure 9). Our

results are in agreement with these two MEP pathway enzymes

being targets of the stromal Clp protease complex.

DISCUSSION

A New Function for the RIF1 Protein in Chloroplasts

The RIF1/NOS1/NOA1 protein was first described to function as

a NO synthase (Guo et al., 2003), but concerns were later raised

about this activity (Crawford et al., 2006; Zemojtel et al., 2006a).

Although our data do not rule out the participation of RIF1 in

the production of NO in Arabidopsis, the fact that not all of the

phenotypes of rif1 plants can be rescued by treatment with the

NO donor SNP (Figure 5) suggests that the loss of RIF1 function

affects other processes unrelated to NO synthesis. In particular,

the increase in DXR levels eventually responsible for the FSM

resistance phenotype of mutant rif1 seedlings was unaffected

by treatment with SNP (Figure 5), indicating that the posttran-

scriptional accumulation of MEP pathway enzymes is not reg-

ulated by NO levels but most likely by an alternative function of

RIF1. Although it has been reported that this protein is targeted

to mitochondria in root cells (Guo and Crawford, 2005), here we

provide several lines of evidence that RIF1 functions predom-

inantly in plastids. RIF1 was imported into wild-type chloro-

plasts in vitro (Figure 4D), and a functional RIF1-GFP fusion

protein was found to be localized in chloroplasts of rescued rif1

plants (Figure 2). The fact that the ultrastructure of etioplasts and

chloroplasts but not mitochondria was clearly affected in rif1

seedlings (Figure 6) further supports a function of RIF1 in differ-

ent types of plastids.

RIF1 is most similar to GTP binding proteins of the YlqF/

YawG family, which are found in many prokaryotic and eukary-

otic organisms (Leipe et al., 2002; Zemojtel et al., 2006a).

Increasing evidence shows that prokaryotic members of this

family are involved in the biogenesis, assembly, and/or stability

of bacterial ribosomes by acting as chaperones or enzymes

modifying rRNA or protein functions (Comartin and Brown,

2006; Uicker et al., 2007). The closest RIF1 homolog is YqeH

(Figure 4C), a B. subtilis protein required for the formation of the

bacterial 70S ribosome and the assembly or stability of the

small (30S) ribosomal subunit (Uicker et al., 2007). Homologs

from eukaryotic organisms lacking plastids, such as yeast and

mammals, have been experimentally found in mitochondria,

and the yeast YqeH protein (YOR205C) was shown to copurify

in a complex with mitochondrial ribosomal proteins of the small

subunit and to interact with mitochondrial translation elonga-

tion factor EF1a (Zemojtel et al., 2006b). Consistent with RIF1

having a similar activity in plastids, the mature protein contains

an N-terminal Zn ribbon domain (see Supplemental Figure 2

Figure 7. Levels of Plastidial Proteins in Seedlings with Impaired Ex-

pression of the Plastome.

Proteins were extracted from Col, rif1-1, and rif10-1 seedlings grown

under long-day conditions for 5 d on MS plates (left panels) and from Col

seedlings grown under the same conditions on MS plates supplemented

(þ) or not (�) with 15 mM CAP (right panels). Immunoblot analyses were

performed with antibodies raised against the indicated proteins. The

position of the DXR protein is indicated with an arrowhead. The arrow

marks the position of the RBCL protein detected by Coomassie blue

(C-Blue) staining.
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online) that might be involved in binding to RNA (Zemojtel et al.,

2006a). Also, a recombinant version of the bacterial YqeH

protein targeted to plastids of rif1 plants was able to comple-

ment the mutant phenotype (Figure 4B; see Supplemental

Figure 3 online). These results, together with the observed

decrease in the levels of plastome-encoded proteins, support a

main role for RIF1 in the expression of the plastid genome

(plastome), most likely in a process required for normal plastid

ribosome function. This conclusion is further supported by the

striking phenotypic similarities between rif1 and rif10, a mutant

known to be defective in the processing of all types of plastid

RNA, including rRNA (Sauret-Güeto et al., 2006).

The Levels of Key MEP Pathway Enzymes Are Modulated

by the Plastidic Clp Protease

The results we have shown here and in a previous report (Sauret-

Güeto et al., 2006) confirm a strong and specific influence of

plastid cues in the regulation of the MEP pathway for isoprenoid

biosynthesis. Evidence provided in this work unveils a mecha-

nism for such regulation involving the participation of the

plastidic Clp protease complex. Impaired expression of the

plastid genome in rif1, rif10, and CAP-treated Col seedlings

unexpectedly resulted in increased levels of the plastome-

encoded ClpP1 subunit of the catalytic ClpPR core of the

complex (Figure 7). It is possible that ClpP1 levels are modulated

not only by their biosynthetic rate but also by a regulatory

feedback mechanism at the posttranslational level. As a result, a

defective production of ClpP1 in the first stages of plastid

development might result in an altered proportion of subunits

within the ClpPR core and an insufficient Clp protease activity,

which in turn might lead to the observed upregulation of ClpP1

levels as a compensatory mechanism (Sjögren et al., 2004). Most

importantly, altered levels of ClpPR subunits in mutant clpr1-2

seedlings (Koussevitzky et al., 2007) also result in enhanced

levels of both DXS and DXR and a concomitant phenotype of

FSM resistance (Figure 8). The fact that these MEP pathway

enzymes are more abundant in chloroplasts from young leaves of

wild-type plants compared with fully expanded leaves of the

outer whorl of the rosette (Figure 8), as expected for most

substrates of the plastidic Clp complex (Sjögren et al., 2006),

Figure 8. Role of the Plastidial Clp Protease Complex in the Degradation

of DXS and DXR.

(A) Representative photographs of Col and mutant clpr1-2 seedlings

germinated and grown under long-day conditions for 5 d on MS plates

supplemented (þ) or not (�) with 50 mM FSM.

(B) Immunoblot analysis of DXS and DXR levels in protein extracts from

seedlings grown as described for (A) without FSM (left panels) and from

leaves of the inner (I) or outer (O) whorls of the rosette of 3-week-old Col

plants (right panels). The position of the DXR protein is indicated with an

arrowhead. The arrow marks the position of the RBCL protein detected

by Coomassie blue (C-Blue) staining.

(C) Real-time quantitative RT-PCR analysis of transcript levels of the

indicated genes in the seedling and rosette leaf samples described for

(B). Levels are represented relative to those in Col seedlings and

correspond to the mean and SE from duplicate PCR analyses of two

independent experiments.
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further implicates DXS and DXR as targets of the plastidial Clp

protease. Consistently, a lower degradation rate of these two

stromal enzymes was observed in rif1 compared with wild-type

chloroplasts (Figure 9).

Proteolytic activities are required for the biogenesis and func-

tioning of plastids and for their adaptation to changing environ-

mental conditions. Plastid proteases of different classes remove

and degrade targeting peptides, eliminate and recycle dam-

aged, misfolded, or misassembled proteins and complexes,

and help maintain the correct stoichiometry between different

proteins and pathways (Adam et al., 2006; Sakamoto, 2006). The

plastid Clp complex is the most prominent stromal protease,

and it shows far more complexity in higher plants than in any

other organism. The presence of similar Clp core complexes in

all plastid types, their abundance, and the essential character

of the catalytic subunits has led to the proposal that this prote-

ase plays a central role in plastid homeostasis and biogenesis,

similar to that of the ubiquitin-proteasome system for plant

development (Peltier et al., 2004). In contrast with the impressive

progress in the structural characterization of this complex, lit-

tle is currently known concerning the specific function of this

stromal protease (Adam et al., 2006; Sakamoto, 2006). Genetic

approaches have revealed that ClpP1 and other subunits of the

catalytic ClpPR core are required for the correct differentiation

of plastids and other aspects of plant development (Shikanai

et al., 2001; Kuroda and Maliga, 2003; Rudella et al., 2006;

Sjögren et al., 2006; Zheng et al., 2006; Koussevitzky et al.,

2007), but the identification of protein substrates in higher plants

has remained elusive. Several putative substrates, including a

variety of chaperones and components required for the synthe-

sis of plastome-encoded proteins, were recently identified

by searching for stromal proteins differentially accumulated in

chloroplasts from transgenic plants with reduced levels of Clp

protease activity (Sjögren et al., 2004, 2006; Rudella et al.,

2006). Our results (Figures 8 and 9) support the hypothesis that

some of the MEP pathway enzymes, which are also localized in

the stroma (Carretero-Paulet et al., 2002; Oudin et al., 2007),

could be targets of the plastidic Clp protease machinery as well.

However, current evidence does not allow us to conclude

whether these proteins are direct targets (actual substrates) of

this protease. It is possible that downregulation of Clp activity in

plastids results in changes that are ultimately responsible for the

observed accumulation of DXS, DXR, and/or the other proposed

substrates. For example, the observed upregulation of a variety

of stromal chaperones in plants with reduced levels of Clp pro-

tease (Sjögren et al., 2004, 2006; Rudella et al., 2006) might

contribute to the observed phenotype of higher DXS and DXR

levels and FSM resistance.

Although more experiments are needed to fully establish how

the plastidic Clp protease and/or other plastid proteins modulate

the accumulation of DXS and DXR enzymes, our work represents

an important step forward to understanding the regulation of

isoprenoid production in plastids. Changes in light conditions

and photosynthetic activity can affect the synthesis of plastome-

encoded proteins in wild-type chloroplasts (Pfannschmidt, 2002)

but also the accumulation of plastidic Clp complex subunits

(Zheng et al., 2006), which in turn could result in changes in the

levels of DXS and DXR proteins. Because both DXS and DXR

have been shown to control flux through the MEP pathway in

Arabidopsis (Estévez et al., 2001; Carretero-Paulet et al., 2006)

and other plants (Rodrı́guez-Concepción, 2006), the described

posttranscriptional mechanism could allow individual plastids to

rapidly optimize the supply of isoprenoid precursors when

needed for the biosynthesis of end products.

Figure 9. Degradation of DXS and DXR in Isolated Chloroplasts.

(A) Chloroplasts isolated from Col and rif1-1 seedlings grown for 2 weeks on MS plates under long-day conditions were incubated for 1 h in the

light at 258C in the presence of 5 mM ATP. Aliquots were taken at the indicated times (minutes) and used for protein extraction and immunoblot

analysis with antibodies against DXS and DXR. The amount of protein loaded was doubled in the case of Col samples, so bands of similar

intensity were obtained in lanes corresponding to untreated Col and rif1 chloroplasts (time 0) in order to better compare degradation rates. The

position of the DXR protein is indicated with an arrowhead. The other major band recognized by the anti-DXR serum is shown to monitor protein

loading.

(B) Quantification of protein levels from two degradation experiments performed as described for (A). DXS and DXR levels (from immunoblot band

intensity) were normalized to those of the unspecific band recognized by the anti-DXR serum and are represented relative to the level in untreated Col

chloroplasts. Mean and SE from duplicate blots of two experiments are represented. Boldface numbers above the columns indicate the ratio between

DXS or DXR protein levels in rif1 versus Col chloroplasts.
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METHODS

Plant Material and Growth Conditions

Arabidopsis thaliana seeds from activation-tagging T-DNA collections

(Weigel et al., 2000), Salk T-DNA insertion lines (Alonso et al., 2003), and

the Ds-GeneTrap line GT6235 (Martienssen, 1998) were obtained from

the Nottingham Arabidopsis Stock Centre. Wild-type and mutant geno-

types used in this work were in the Col background with the exception of

the GT6235 line, which was generated in Landsberg erecta. Seeds were

surface-sterilized before plating on Petri dishes with solid Murashige and

Skoog (MS) medium as described (Sauret-Güeto et al., 2006). Where

indicated, the medium was supplemented with FSM (Gateway Chemical

Technology), SNP (Sigma-Aldrich), SFC (Sigma-Aldrich), or CAP (Sigma-

Aldrich). Plates were kept for at least 2 d at 48C for stratification and then

transferred to a growth chamber at 228C under long-day conditions (8 h in

the dark and 16 h under fluorescent white light at a photon fluence rate of

100 mmol�m�2�s�1). For seed production, plants were transferred from the

plates to a 1:1:1 (v/v) perlite:vermiculite:sphagnum soil mixture irrigated

with mineral nutrients and grown in the long-day chamber.

Identification of the T-DNA Insertion Site and Sequence Analysis

For the identification of the gene responsible for the FSM resistance

phenotype in rif1, homozygous mutant plants were backcrossed with the

Col wild type to test whether the corresponding mutations were linked to

the presence of the T-DNA. After identifying the recessive nature of the

rif1 mutation and its linkage to the resistance marker associated with the

T-DNA, the insertion site was identified using an inverse PCR strategy as

described (Sauret-Güeto et al., 2006).

Sequence analyses were performed with the Vector NTI Suite 6

(InforMax) software package and the available web resources. RIF1

putative homologs were searched on the National Center for Biotechnol-

ogy Information and The Arabidopsis Information Resource databases

(www.ncbi.nlm.nih.gov and www.Arabidopsis.org, respectively). Multiple

alignments were performed with the ClustalW program (www2.ebi.ac.uk/

clustalw), edited with GeneDoc (www.psc.edu/biomed/genedoc), and

used to construct a phylogenetic tree with MEGA 2.1 (Molecular Evolu-

tionary Genetics Analysis; www.megasoftware.net).

Generation of Transgenic Plants

Constructs for the constitutive expression of the fusion proteins RIF1-

GFP and P-YqeH-GFP in transgenic plants were made as described in the

Supplemental Methods online and used for Agrobacterium tumefaciens–

mediated transformation of rif1-1 plants as described (Sauret-Güeto

et al., 2006). Plants expected to harbor the transgenes were selected

based on their ability to survive when grown on MS plates supplemented

with 50 mg/mL hygromycin. The resulting positive plants were transferred

to soil and allowed to set seed. Lines harboring a single T-DNA insertion

were identified by segregation of the hygromycin selection marker and

used for analysis.

Analysis of Transcript and Protein Levels

Real-time quantitative RT-PCR was performed as described (Carretero-

Paulet et al., 2006). Crude total protein extracts from Arabidopsis tissues

were obtained by grinding samples in liquid nitrogen and resuspending in

ice-cold TKMES homogenization buffer (100 mM Tricine-KOH, pH 7.5, 10

mM KCl, 1 mM MgCl2, 1 mM EDTA, and 10% [w/v] sucrose) supple-

mented with 0.2% (v/v) Triton X-100, 1 mM DTT, 100 mg/mL phenyl-

methylsulfonyl fluoride, 3 mg/mL E64, and 20 mL/mL protease inhibitor

cocktail (Sigma-Aldrich). Protein concentration was determined as de-

scribed (Carretero-Paulet et al., 2002). Separation by SDS-PAGE

and immunoblot analyses were performed as described (Rodrı́guez-

Concepción et al., 2004). Antibodies against DXS, DXR, and ClpP1 were

kind gifts of Patricia León (Instituto de Biotecnologı́a-UNAM), Michael H.

Walter (Leibniz Institute of Plant Biochemistry), and Zach Adam (Hebrew

University), respectively. Sera against AtpB and PsbA were purchased

from Antisera. In the case of mutant or inhibitor-treated Col seedlings with

decreased levels of RBCL (the major protein in the extracts), protein

loading was normalized to the levels of other proteins detected by

Coomassie Brilliant Blue staining of the gels. Bands corresponding to

DXS and DXR were identified by size and by comparison with samples

from transgenic overexpression lines (Carretero-Paulet et al., 2006;

Sauret-Güeto et al., 2006). Chemiluminescent signals of the selected

bands were visualized using a LAS-3000 (Fujifilm) image analyzer and

quantified with the Multigauge Fujifilm 3.0 software. The levels of the

unspecific band recognized by the anti-DXR serum were also quantified

for normalization and used as an additional control of equal loading.

Similar results were obtained when different proteins detected by

Coomassie Brilliant Blue staining were used for normalization.

Chloroplast Isolation, Import Assays, and Degradation Experiments

For chloroplast import experiments, a cDNA sequence encoding the full-

length RIF1 protein was cloned into the SmaI site of pBluescript SKþ
(Stratagene). A construct with the right orientation, pBS-RIF1, was used

as a template for in vitro transcription and translation using the TNT Quick

T7 system (Promega) with 35S-labeled Met and T7 RNA polymerase.

Plasmid pDXR-At (Carretero-Paulet et al., 2002) was used to obtain

labeled DXR protein as a positive control. Import experiments were

performed with chloroplasts isolated from 10-d-old Arabidopsis seed-

lings as described (Kubis et al., 2007) (see also Supplemental Methods

online). Import was performed in white light at 258C for 10 min. Thermo-

lysin treatment and detection of imported polypeptides were performed

as described (Aronsson and Jarvis, 2002).

For degradation experiments, chloroplasts isolated from 14-d-old

seedlings were resuspended in HMS buffer (see Supplemental Methods

online) supplemented with 20 mM gluconic acid, 10 mM NaHCO3, 0.2%

(w/v) BSA, and 5 mM Mg-ATP and incubated at 258C under white light

(100 mmol�m�2�s�1). Aliquots of ;107 chloroplasts were taken at 0, 15,

30, and 60 min, immediately pelleted, and frozen in liquid nitrogen to stop

all protein degradation, as described (Sjögren et al., 2004). Pelleted

samples were resuspended in ice-cold TKMES buffer (see Supplemental

Methods online) and incubated for 15 min on ice for chloroplast lysis and

protein solubilization. Determination of protein concentration, separation

by SDS-PAGE, and immunoblot analysis were performed as described

above.

Microscopy

Methods for the observation and recording of chlorophyll autofluores-

cence in whole seedlings, confocal laser scanning microscopy, and

transmission electron microscopy are described in the Supplemental

Methods online.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data

libraries under the following accession numbers: AtpB, AtCg00480;

ClpP1, AtCg00670; ClpR1, At1g49970; DXR, At5g62790; DXS,

At4g15560; HDR, At4g34350; HDS, At5g60600; MJ1464, Q58859;

PsbA, AtCg00020; RBCL, AtCg00490; RIF1/NOS1/NOA1, At3g47450;

RIF10, At3g03710; YawG, Q10190; YjeQ, P39286; YlqF, F69880; and

YqeH, P54453.
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The following materials are available in the online version of this article.

Supplemental Figure 1. Quantification of FSM Resistance of rif1

Seedlings.

Supplemental Figure 2. Multiple Alignment of the B. subtilis YqeH

Protein with the Arabidopsis Closest Homologs.

Supplemental Figure 3. Phenotype of rif1 Plants Constitutively

Expressing a Plastid-Targeted Bacterial YqeH Protein Fused to GFP

(PYG).

Supplemental Figure 4. Ultrastructure of Chloroplasts in Wild-Type

and rif1 Leaves.

Supplemental Methods. Constructs for the Production of Transgenic

Lines; Chloroplast Isolation; Microscopy.

Supplemental Data Set 1. Text File of the Alignment Corresponding

to Figure 4C and Supplemental Figure 2 online.
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