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About 40% of the proteins encoded in eukaryotic genomes are proteins of unknown function (PUFs). Their functional
characterization remains one of the main challenges in modern biology. In this study we identified the PUF encoding genes
from Arabidopsis (Arabidopsis thaliana) using a combination of sequence similarity, domain-based, and empirical approaches.
Large-scale gene expression analyses of 1,310 publicly available Affymetrix chips were performed to associate the identified
PUF genes with regulatory networks and biological processes of known function. To generate quality results, the study was
restricted to expression sets with replicated samples. First, genome-wide clustering and gene function enrichment analysis of
clusters allowed us to associate 1,541 PUF genes with tightly coexpressed genes for proteins of known function (PKFs). Over
70% of them could be assigned to more specific biological process annotations than the ones available in the current Gene
Ontology release. The most highly overrepresented functional categories in the obtained clusters were ribosome assembly,
photosynthesis, and cell wall pathways. Interestingly, the majority of the PUF genes appeared to be controlled by the same
regulatory networks as most PKF genes, because clusters enriched in PUF genes were extremely rare. Second, large-scale
analysis of differentially expressed genes was applied to identify a comprehensive set of abiotic stress-response genes. This
analysis resulted in the identification of 269 PKF and 104 PUF genes that responded to a wide variety of abiotic stresses,
whereas 608 PKF and 206 PUF genes responded predominantly to specific stress treatments. The provided coexpression and
differentially expressed gene data represent an important resource for guiding future functional characterization experiments
of PUF and PKF genes. Finally, the public Plant Gene Expression Database (http://bioweb.ucr.edu/PED) was developed as
part of this project to provide efficient access and mining tools for the vast gene expression data of this study.

Only a small percentage of the proteins encoded in
animal or plant genomes are sufficiently characterized
with regard to their cellular functions. The functions
for the majority of these proteins remain either com-
pletely unknown (40%) or only partially understood
(Gollery et al., 2006, 2007). In light of this significant
knowledge deficit, our understanding about existing
molecular functions (MFs) appears to be fundamen-
tally incomplete. This is even more evident when we
assume that the vast space of unexplored molecular
and biological functions is composed of proteins with
at least comparable or even greater diversity and im-
portance for cellular processes than the known space.

Efforts to narrow this knowledge gap will provide a
wide spectrum of opportunities for advancing our
understanding about plant and nonplant systems.

Two major methods are in use for defining proteins
of unknown functions (PUFs) in model organisms. The
widely used similarity approach considers all proteins
as PUFs that show no detectable sequence or structural
similarities to functionally characterized proteins in
reference databases (Boeckmann et al., 2003; Leinonen
et al., 2004). In contrast to this, the more conservative
empirical approach defines as PUFs all proteins that
lack direct experimental evidence as support for a
specific function. Conceptually, the empirical approach
incorporates most PUFs identified by the similarity
approach, as well as functionally uncharacterized se-
quences that share sequence similarities with proteins
of known function (PKFs). Sequence families and or-
tholog clusters are particularly affected by this funda-
mental difference between the two unknown definitions.
For instance, when a group of related sequences con-
tains one or more members of known function, then
the similarity approach tends to assign all of them to
the known space, whereas the empirical approach
distinguishes between functionally characterized and
uncharacterized candidates within groups of related
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sequences. As a result of this difference, most similarity-
based PUFs of a given genome are either singletons
or members of families that consist exclusively of
uncharacterized sequences. These performance char-
acteristics of the similarity concept result in an under-
estimation of the number of PUFs, because many
genes in eukaryotic organisms are members of poorly
characterized gene families (Horan et al., 2005). To
illustrate this, all members of large families, like pro-
tein kinases or cytochrome P450s, will be assigned by
the similarity approach to the known protein space,
even though most of their members remain function-
ally uncharacterized (Wang et al., 2003; Nelson et al.,
2004; Horan et al., 2005).

Dividing gene products into only two categories of
known and unknown sequences is an oversimplifica-
tion of a complex knowledge system with incremental
and multifaceted differences. Consequently, every def-
inition for drawing a strict separation line remains ar-
tificial and controversial. While acknowledging these
difficulties, this study will adopt this two-class system
mainly for practical reasons.

To advance our knowledge beyond a roadmap of
knowing what we do not know, it is important to de-
velop and apply approaches for predicting putative
functions for PUFs. Bioinformatic techniques provide
here a wide spectrum of opportunities. For instance,
PUFs can be associated with remotely related PKFs
by using sensitive sequence and structure similarity
search strategies (Eddy, 1996; Altschul et al., 1997). The
detected similarities can reveal important clues for
testing their functions experimentally. Additionally,
one can predict functional features from their se-
quences, such as subcellular targeting signals, second-
ary structures, and membrane domains (Schwacke
et al., 2003; Gollery et al., 2006). Proteomics and pro-
tein interaction technologies provide additional im-
portant functional links (Johnson and Liu, 2006).
However, for plants the required proteome resources
are not yet available on a genome-wide level. One
of the most promising and readily available informa-
tion resources for systematic functional assignment
studies of PUF genes represent large-scale gene ex-
pression data from public microarray databases. These
data sets offer vast opportunities for associating PUF
genes with MFs and cellular processes of coregulated
PKF genes.

In this study we identified and analyzed the
genome-wide PUF encoding genes from Arabidopsis
(Arabidopsis thaliana) using both empirical and simi-
larity strategies. Large-scale analysis of publicly avail-
able gene expression array data allowed us to associate
PUF with PKF genes based on similarities of their
expression and treatment response profiles. For this,
cluster analysis was used to identify groups of co-
regulated PUF and PKF genes based on the similarity
of their expression profiles across a wide range of tis-
sue and treatment samples. Subsequently, enrichment
analysis of Gene Ontology (GO) terms was applied to
annotate the obtained clusters by overrepresented

gene functions. Second, statistical analysis of differen-
tially expressed genes (DEGs) allowed us to identify
PUFs that exhibit generic and specific expression
changes in response to a large number of different
abiotic stress treatments. Finally, the Plant Gene Ex-
pression Database (PED) was developed to provide to
the public efficient data mining utilities for the com-
plex differential expression and clustering data of this
project.

RESULTS AND DISCUSSION

Identification of PUFs

To obtain for this study a comprehensive set of PUFs
from Arabidopsis, we compared three profoundly
different PUF identification methods. The three ap-
proaches are based on GO annotations, sequence sim-
ilarities, and protein domain searches.

First, we mined the GO annotations to estimate the
number of PKFs and PUFs from a manually curated
knowledge system that combines empirical and com-
putational methods for assigning gene functions
(Berardini et al., 2004; Falcon and Gentleman, 2007).
Alternative pathway annotation systems from KEGG
and AraCyc could have been used for the same purpose
(Mueller et al., 2003; Kanehisa et al., 2006). However,
due to the limited number of Arabidopsis genes
(,40%) assigned to pathways, the GO system, with
close to 95% genome coverage, appears to be currently
the more efficient resource for identifying nearly com-
plete PUF sets. This number includes the direct assign-
ments to the root term of each ontology, which are the
new GO annotations for sequences of unknown func-
tion (see ‘‘Material and Methods’’ for more details).

The evidence codes of the GO annotations specify
which functional assignments are supported by ex-
perimental evidence data from the public domain and
which annotations are solely based on computational
prediction methods (Ashburner et al., 2000). To gain
insight into the nature of the annotations with regard
to the evidence type for assigning members to the
known and unknown space, we combined in Table I
the current set of 13 evidence codes into four custom
categories. The category with the highest level of func-
tional support (empirical) is based on direct evidence
from traditional single sample experiments, the sec-
ond one is based on large-scale screening data (large
scale), the third one on computational predictions (se-
quence), and the fourth one on the GO-based PUF
entries that lack functional support from experiments
or in silico analyses. The detailed assignment schema
of the evidence codes to the four categories is provided
in the legend of Table I.

According to the above strategy, 32% to 38% of the
Arabidopsis genes are currently annotated by the GO
system as PUF encoding genes (Table I). This is largely
in agreement with the estimates from previous studies
(Wortman et al., 2003; Gollery et al., 2006). Interestingly,
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only 7% of all entries are functionally characterized by
traditional one-gene-at-a-time experiments in the MF
ontology and 14% in the biological process (BP) ontol-
ogy, whereas 34% and 18% have functional support
from high-throughput experiments, respectively. This
means that 93% of the genes from Arabidopsis code
for poorly characterized proteins or PUFs when the
most conservative empirical criteria are applied within
the MF ontology. The relative amount of PUFs for
the combined empirical and large-scale categories is
59% in the MF ontology and 68% in the BP ontology.
The cellular component (CC) ontology contains by far
the largest number of entries with sequence-based
annotations and the lowest for the empirical cate-
gories. This trend is due to the majority of the CC
annotations presently being based on computational
ab initio predictions of subcellular localizations,
whereas annotations with experimental support are
much less frequent in this category than in the other
two ontologies. The subsequent analysis steps of this
study utilize the standard PUF set from the MF ontol-
ogy containing 8,665 members. These genes are exclu-
sively assigned to the root term of the MF ontology
(GO:0003674) and they carry the evidence code ND (no
[biological] data available). The MF category was
selected here because protein functions are most pro-
foundly described at the mechanistic molecular level,
whereas the other two ontologies, BP and CC, provide
rather indirect information in this regard.

To compare the results obtained from the MF ontol-
ogy with alternative PUF identification methods, we
also used one sequence similarity and one domain-
based approach using hidden Markov models. First, all
predicted Arabidopsis proteins were searched against
the Swiss-Prot database with the BLASTP program

(Altschul et al., 1990; Wu et al., 2006). Protein sequences
that showed no similarities to functionally character-
ized proteins in the Swiss-Prot database were classified
as PUFs using an expectation value (E value) of 1026 as
the cutoff. Second, the same protein set was used to
search the Pfam database with the HMMPFAM pro-
gram (Eddy, 1996; Bateman et al., 2004). Likewise,
sequences without similarities to protein domains of
known function (E value $1022) or those matching
exclusively domains of unknown function were con-
sidered PUFs. Due to different calculation methods, the
E values of the two search algorithms are not directly
comparable. Therefore, we chose for both methods
conservative cutoff values that are commonly used for
sensitive sequence similarity searching with low false
positive detection rates (e.g. Girke et al., 2004; Horan
et al., 2005; Gollery et al., 2006). Table II provides a
comparison of the results from the three different PUF
identification approaches. Based on the chosen confi-
dence thresholds, all three approaches identified PUF
sets of comparable sizes with 8,272 to 8,681 members,
whereas 5,456 to 6,260 PUFs are common among two,
and 4,667 among all three methods. The corresponding
gene lists for the three methods are provided in Sup-
plemental Data S1.

To simplify the description of the subsequent func-
tional analysis steps of this study, the remaining text is
restricted to the PUF set obtained from the MF ontol-
ogy, whereas the data for the remaining PUF identifi-
cation methods are included in the corresponding
Supplemental Data S1, S3, S5, and S7. The GO PUF set
was given preference because of the high quality of the
manually curated GO annotation system and its broad
acceptance in the scientific community.

Relative Amount of Expressed Genes

To functionally associate PUF with PKF encoding
genes based on the similarity of their mRNA expression
profiles, large-scale gene expression analysis of publicly

Table I. Functional classification by gene ontologies

The numbers of protein coding loci from Arabidopsis are given for
custom categories of evidence codes of the three gene ontologies: MF,
BP, and CC. A description of the evidence codes is available on the GO
project site (http://www.geneontology.org/GO.evidence.shtml). The
number of loci with annotations in any of the three ontologies (Any)
are given in the last two rows. The percentage values are calculated
relative to the total number of protein coding genes represented in the
three ontologies. The evidence codes are grouped into the following
custom categories of functional assignments: empirical data (IC, IDA,
IGI, IMP, IPI, TAS), large-scale experiments (IEP, RCA, NAS, NR),
sequence similarity or feature predictions (IEA, ISS), and PUFs lacking
functional data (ND). The last column (Missing) accounts for genes that
lack annotations within the listed ontologies.

Empirical Large Scale Sequence PUFs Missing

MF 1,918 9,061 4,677 8,665 2,228
% 7 34 18 33 8
BP 3,731 4,777 4,462 10,194 3,385
% 14 18 17 38 13
CC 3,333 1,661 8,527 8,426 4,602
% 13 6 32 32 17
Any 5,837 11,005 12,851 14,071 0
% 22 42 48 53 0

Table II. PUF identification by different methods

The table provides a matrix representation of the number of PUFs de-
termined by the three different identification methods: BLASTP searches
against the Swiss-Prot (SWP) database, HMMpfam searches against
Pfam, and the GOMF approach from Table I. The amount of PUFs
common between pairwise comparisons of methods is provided in the
corresponding row and column intersects of the matrix. The numbers of
PUFs identified by all three methods (All) or by at least one of them (Any)
are given in the last two rows, respectively. The percentage values are
calculated relative to the total number of protein coding genes. The com-
plete gene lists for the PUF sets are available in Supplemental Data S1.

Method SWP Pfam GOMF

SWP 8,681 (32%) 6,260 (23%) 5,456 (20%)
Pfam – 8,272 (31%) 5,788 (21%)
GOMF – – 8,665 (32%)
All 4,667 (17%) – –
Any 12,781 (47%) – –

Annotating Genes by Large-Scale Coexpression Analysis
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available Affymetrix GeneChip microarrays was per-
formed. Only experiment sets containing at least two
replicate samples were used for this analysis to enable
statistical analysis of DEGs and to increase the confi-
dence of the obtained results. In total, the study in-
cluded the raw expression data from 1,310 Affymetrix
chips from the AtGenExpress and Gene Expression
Omnibus (GEO) sites (Schmid et al., 2005; Barrett et al.,
2006). Table III provides a summary of the chosen ex-
periment sets that covers a wide spectrum of treatment
series and tissue samples. The complete list of the an-
alyzed data is available in Supplemental Data S2.

The relative amount of expressed genes can be ex-
pected to be lower in the PUF than in the PKF category
because many predicted PUF genes may be the result of
genome annotation artifacts or may represent untran-
scribed pseudogenes. In addition, a certain fraction of
PUF genes may be expressed below the detection limit
of the GeneChip microarray technology. To estimate the
extent of these limitations, the amount of detectable
genes across all experiment categories was compared
between the PUF and PKF sets. The present call infor-
mation of the nonparametric Wilcoxon signed rank test
of the MAS5 algorithm provides for this purpose rel-
atively reliable estimates (Liu et al., 2002; Schmid et al.,
2005; McClintick and Edenberg, 2006). According to
this test, the amount of detectable genes between the
PUF and PKF sets differs 0.5% to 8% within the five
frequency intervals plotted in Figure 1. The detailed
data set of this analysis is available in Supplemental
Data S3. Based on these rather small relative differ-
ences, it is likely that the majority of the PUF genes are
expressed at high enough levels to obtain for them
meaningful data in the downstream cluster and differ-
ential gene expression analyses of this study.

Cluster Analysis

Because many dynamic cellular processes are tightly
associated with coordinated transcriptional changes,

cluster analysis of gene expression profiles can be used
to identify candidate sets of coregulated genes that are
directly or indirectly involved in related processes
(Steinhauser et al., 2004a; Gachon et al., 2005; Toufighi
et al., 2005; Haberer et al., 2006; Jen et al., 2006;
Vandepoele et al., 2006; Wei et al., 2006; Gutierrez
et al., 2007). For instance, if a group of genes exhibits
correlated expression profiles and it is significantly
enriched in genes involved in a specific process then it
is reasonable to assume that some of the PUF members
of this cluster may share overlapping functions with its
functionally characterized members. This association-
based approach was applied here on a genome-wide
level to systematically assign PUF to PKF genes based
on the similarity of their expression profiles. Despite
the great potential of this approach, it is important to
keep in mind that correlation does not prove causal
relationships. It only provides useful leads for estab-
lishing hypotheses and causal links in downstream
investigations. Accordingly, the results of this study
need to be interpreted as preliminary computer pre-
dictions that offer useful information for guiding future
gene characterization experiments. Final evidence
about gene and protein functions cannot be inferred
directly from this data. Alternative network modeling
approaches were not considered for this study because
of the lack of efficient statistical methods to efficiently
represent, score, and interpret the resulting network
architectures on a genome-wide scale (e.g. Wolfe et al.,
2005; Gutierrez et al., 2007; Ma et al., 2007). At this point,
the traditional clustering approach appears to be more
practical for the goals of this study.

To generate reliable and biologically relevant gene
clusters form expression data, we evaluated several

Table III. Analyzed gene expression arrays

The table provides an overview of the different categories of
GeneChip microarray experiments (first column) that were analyzed
in this study. The following numeric columns contain the number of
raw data (Cel) files, the amount of the corresponding biosamples
(Samples), the number of performed comparisons in the DEG analysis
(Comp), and the number of experiment sets (ExpSet) the raw data are
derived from. A more detailed list of this data is available in Supple-
mental Data S2.

Category Cel Samples Comp ExpSet

Abiotic stress 524 254 129 10
Biotic stress 200 72 55 6
Chemical treatment 99 46 35 9
Tissue and development 237 79 40 1
Genotype 86 29 28 4
Hormone treatment 164 80 46 11
Sum 1310 560 333 41

Figure 1. Relative amount of detectable genes. The relative amount of
present calls is plotted for all genes (ALL), the PKF set and the PUF set
using the five frequency intervals (bins): 0, 1 to 25, 26 to 50, 51 to 75,
and 76% to 100% present calls. All experiment sets of this study were
used for generating this plot. The complete present call data set for the
individual experiment categories is available in Supplemental Data S3.
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available clustering algorithms (e.g. K-means, self-
organizing maps) and selected agglomerative hierar-
chical clustering as the method of choice (Murtagh,
1985; Eisen et al., 1998; de Hoon et al., 2004; R Devel-
opment Core Team, 2006). The hierarchical clustering
method was chosen because of three main advantages:
(1) the method requires no prior knowledge about the
optimum number of the final clusters, (2) it is extremely
robust in joining highly similar items into proper sim-
ilarity groups, and (3) it provides an information-rich
data output that represents the relative distances be-
tween all clustered items in a dendrogram (Becker et al.,
1988). The main disadvantages of the approach are the
complexity of its data output, the lack of predefined
boundaries between clusters, and its weaker perfor-
mance in identifying local expression similarities in a
small subset of the samples (Prelic et al., 2006). How-
ever, most of these challenges can be overcome by
applying efficient postprocessing methods of the ob-
tained dendrograms, such as tree cutting methods
(Gutierrez et al., 2007). Popular fuzzy clustering ap-
proaches (Krishnapuram et al., 2001) that allow member-
ships in several clusters—as opposed to strict clustering
with unique memberships—were not considered for
this study because it is difficult to efficiently prioritize
and mine the complex cluster memberships from these
methods in the downstream functional analysis steps.
As an implementation of the hierarchical clustering
algorithm, we used the hclust function (Murtagh, 1985)
from the statistical programming environment R (R
Development Core Team, 2006). As distance measure-
ment we used correlation coefficients and as the cluster
joining method complete linkage (see ‘‘Material and
Methods’’ for more details). To obtain discrete clusters
from the resulting dendrograms, we developed for this
study a novel, to our knowledge, hierarchical threshold
clustering (HTC) method. The corresponding R script is
available in Supplemental Data S10. This method se-
lects clusters in hierarchical clustering dendrograms
based on a maximum tolerable distance between clus-
ter members by applying an all-against-all distance test
on all possible subtrees, while maintaining unique
cluster memberships. As the threshold we chose for
this step a minimum correlation coefficient of 0.6. This
relatively conservative HTC setting ensures that all
members of any given cluster share with all other
members of the same cluster correlation coefficients
between the selected cutoff of 0.6 and the highest
possible value of 1.0. The exact cutoff value of 0.6 was
chosen because it resulted in the highest enrichment of
functionally related genes compared to alternative
cutoff settings (Supplemental Data S4). Additionally,
other gene expression correlation studies have used the
same or very similar cutoff values (Haberer et al., 2006;
Wei et al., 2006).

Applying the above strategy, we calculated four
separate clustering data sets using both the Pearson
correlation coefficients (PCC) and the Spearman corre-
lation coefficients (SCC), in their signed and absolute
forms as distance measures. The following text will

refer to the four methods as PCC, SCC, PCCa, and
SCCa, respectively (Supplemental Data S5). All four
data sets were generated because of their complemen-
tary performance characteristics. The clustering with
absolute correlation values allows the identification of
positively and negatively correlated gene expressions,
whereas the sign-specific approach joins only posi-
tively correlated items into similarity groups. The rank-
based Spearman approach is limited to identifying
global similarities in expression profiles, whereas the
Pearson approach is very sensitive in detecting both
global and local similarities. In particular, the latter
detects local similarities with wide amplitude changes
relative to the background, which can result in extreme
cases in coclustering of outliers. A consensus approach
between several or all methods was not considered
because such a strategy would artificially deflate the
cluster sizes and compromise the transparency of the
results.

The distributions of the obtained numbers of clusters
including their sizes from the four clustering methods
are summarized in Figure 2. Because the sign removal
increases the potential pool sizes of gene pairs with
correlation values above a given cutoff, one would
expect larger cluster sizes for the data sets with absolute
correlation values compared to their signed counter-
parts. This trend can be observed in the many individ-
ual clusters in Supplemental Data S5, but the effect is
not very pronounced in the global representation of
Figure 2. These relative increases in cluster sizes are not
as frequent as expected because of two main reasons.
First, the number of highly negatively correlated gene

Figure 2. Cluster distributions. The numbers of clusters (A) and genes
(B) are plotted for the cluster size intervals (bins) that are given along the
abscissa. Each set of four bars, from left to right, contains the data for the
clustering results using PCC, absolute PCC, SCC, and absolute SCC
values as distance measures, respectively.
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pairs is much smaller than the number of positively
correlated gene pairs (data not shown; compare Haberer
et al. [2006]). Second, the assignment of a negatively
correlated gene to a cluster at an earlier stage of the
hierarchical clustering process can prevent other po-
tential members from joining the same cluster at a given
cutoff level, if they do not share the required degree of
correlation with the existing members. This is particu-
larly the case in combination with a complete linkage
joining method that was chosen for this study to min-
imize the number of false positive members in the
generated clusters.

The most obvious differences among the four clus-
tering data sets in Figure 2 are the numbers of singlet
genes that do not join any clusters in the different
methods. There are about 2,000 fewer singlet genes in
the Pearson than in the Spearman data sets. This is
expected because the latter method tends to generate
slightly lower correlation values on gene expression
data. Due to space restrictions, the subsequent text
focuses on the clustering results from the distance
method with the signed PCC, whereas the results for
the other three methods are included in Supplemental
Data S5. In addition, the clustering data for individual
genes are available in the associated public database of
this study (see below).

Functional Categorization of Gene Expression Clusters

Gene expression clusters with highly enriched func-
tions provide more conclusive information about the
potential roles of their PUF encoding members than
clusters with very heterogeneous compositions. To
functionally annotate the obtained clusters and to select
the most informative gene sets with overrepresented
gene functions, we performed enrichment analysis of
GO terms using the hypergeometric distribution as a
statistical test (Falcon and Gentleman, 2007). This
method computes the enrichment test for all approxi-
mately 18,000 GO nodes of the three ontology networks
and ranks the results by P values (see ‘‘Material and
Methods’’; Supplemental Data S9). The results of this
method are more comprehensive and informative than
generalized functional categorization systems, like GO
slim or high-level pathway classification systems. Clus-
ters with fewer than five members were excluded from
this analysis because the predictive value of extremely
small clusters is rather limited. The complete result set
of this enrichment analysis is available in Supplemental
Data S6. It contains the data for 916 clusters composed
of a total of 11,077 genes. To prioritize the clusters based
on the obtained enrichment data, we applied two
selection filters. First, each cluster of interest needed
to contain at least one overrepresented GO term in one
of three ontologies (enrichment filter). Second, at least
20% of the cluster members had to be associated with
this GO term to select clusters with relatively homoge-
neous compositions (uniformity filter). An overview of
the number of clusters that meet these filter criteria is
provided in Table IV. It contains the results for four

different P-value cutoffs of the GO term enrichment
filter ranging from 0.05 to 1026. The corresponding GO
annotations for the prioritized cluster set that passed
the most stringent selection criteria of 1026 are listed in
Table V. For space and readability reasons, the table
presents only the highest ranking GO term for each of
the three ontologies. The full set of GO annotations can
be found in Supplemental Data S6. The following
discussion of selected clusters is restricted to this
most conservative data set (Table V). It contains 66
clusters with a total of 1,279 genes that include 277 PUF
genes derived from 53 clusters (see Table IV). Our focus
on these clusters does not indicate that the other clus-
ters of this study are biologically less important. This
selection is mainly based on the assumption that clus-
ters with uniform GO annotations are particularly
informative for functionally associating PUF with
PKF genes.

Depending on the stringency of the applied prioriti-
zation filters listed in Table IV, our combined clustering
and GO term enrichment strategy associated 277 to
1,541 PUF genes to overrepresented GO annotations. In
comparison to the GO annotations currently available
for these PUF genes, our method associated 216 to 1,050
of them to more specific GO terms in the MF category,
225 to 1,089 in the BP category, and 239 to 1,096 in the
CC category (Supplemental Data S6). The large number
of PUF genes associated with functionally informative
annotations demonstrates the great potential of our
approach for guiding future experimental studies on
these genes.

Based on enrichment P values, the most highly
overrepresented functional categories in the obtained
cluster set are the BPs: ribosome assembly, photosyn-
thesis pathways, and cell wall metabolism (Table V).
This finding is largely in agreement with related gene

Table IV. Overview of GO term enrichment analysis

The amounts of clusters and genes are provided for different cluster
prioritization filters that were applied to the GO term enrichment data
of Supplemental Data S6. The values in parentheses represent the
corresponding number of clusters containing PUF genes and the
number of PUF genes in these clusters, respectively. The first row
contains the counts for the unfiltered data set that considered only
clusters with five or more members. The subsequent rows refer to the
counts after applying the following two-component filter with four
different stringency settings. (1) To select clusters with enriched GO
terms, the clusters had to contain one or more overrepresented GO
terms in at least one of the three ontologies based on the Bonferroni
corrected P values of the enrichment analysis. The four different P-value
cutoffs used for this filter are given in the first column. (2) In addition,
$20% of the cluster members needed to be associated with the
selected GO term to favor functionally homogeneous clusters.

Filter Clusters Genes

None 916 (794) 11,077 (2,884)
0.05 519 (429) 6,262 (1,541)
0.01 373 (301) 4,893 (1,126)
0.001 212 (170) 3,315 (744)
1E-06 66 (53) 1,279 (277)
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Table V. GO term enrichment data for prioritized clusters

The GO annotations for the most conservative cluster prioritization filter from Table IV are provided. The three filtering criteria for selecting the
presented clusters are described in the previous legend. Based on space and readability considerations, only the highest ranking GO term within each
ontology is included here. As a result of our prioritization criteria, every cluster listed has at least one GO term assigned that meets both the enrichment
(P value #1026) and uniformity ($20%) criteria. If an ontology did not contain a GO term passing these filters then the candidate with the lowest P
value was chosen. GO slim terms are used as table subtitles to organize the clusters based on a general BP classification schema. The different columns
provide the identifiers of each cluster (CLID), the number of genes (CLSZ), the number of PUF genes, the number of genes matching a given GO term
(Sample), the Bonferroni corrected P value of the hypergeometric distribution test (P value), the ontology type (Ont), and the corresponding GO term,
respectively. The complete list of enriched GO terms and the associated gene identifiers for these clusters are available in Supplemental Data S6.

CLID CLSZ PUF Sample P Value Ont GO Term

Reproduction
115 20 5 2 3.00E-06 BP GO:0010344, seed oil body biogenesis
115 20 5 11 0.014 CC GO:0016020, membrane
115 5 4 4.30E-07 MF GO:0045735, nutrient reservoir activity

Carbohydrate metabolism
95 21 4 4 5.90E-06 BP GO:0006073, glucan metabolic process
95 21 4 8 1.80E-10 CC GO:0005618, cell wall
95 21 4 4 1.90E-07 MF GO:0005199, structural constituent of cell wall

131 18 1 6 1.10E-10 BP GO:0006007, Glc catabolic process
131 18 1 7 1.80E-05 CC GO:0005739, mitochondrion
131 18 1 2 1.30E-05 MF GO:0004738, pyruvate dehydrogenase activity
248 11 2 3 9.30E-07 BP GO:0005982, starch metabolic process
248 11 2 9 1.70E-07 CC GO:0009507, chloroplast
248 11 2 5 0.003 MF GO:0016740, transferase activity
300 11 3 3 1.70E-08 BP GO:0005983, starch catabolic process
300 11 3 5 0.011 CC GO:0044444, cytoplasmic part
300 11 3 2 0.0025 MF GO:0016758, transferring hexosyl groups
548 7 0 3 2.30E-08 BP GO:0006084, acetyl-CoA metabolic process
548 7 0 2 1.70E-06 CC GO:0009346, citrate lyase complex
548 7 0 3 7.30E-09 MF GO:0046912, transferring acyl groups
686 6 1 3 5.60E-08 BP GO:0005982, starch metabolic process
686 6 1 2 0.0018 CC GO:0005829, cytosol
686 6 1 2 3.10E-06 MF GO:0001871, pattern binding
599 5 0 2 7.30E-06 BP GO:0016138, glycoside biosynthetic process
599 5 0 2 0.19 CC GO:0043231, intracellular membrane organelle
599 5 0 3 5.00E-07 MF GO:0004497, monooxygenase activity

Nucleotide metabolism
25 39 10 8 2.60E-07 BP GO:0006259, DNA metabolic process
25 39 10 3 0.0045 CC GO:0044427, chromosomal part
25 39 10 2 0.033 MF GO:0003777, microtubule motor activity
29 37 5 13 2.10E-14 BP GO:0006259, DNA metabolic process
29 37 5 6 5.30E-07 CC GO:0005694, chromosome
29 37 5 15 1.20E-06 MF GO:0003677, DNA binding
41 33 5 4 1.30E-05 BP GO:0006399, tRNA metabolic process
41 33 5 21 1.80E-15 CC GO:0009536, plastid
41 33 5 2 0.019 MF GO:0004812, aminoacyl-tRNA ligase activity

Translation
23 37 0 36 9.80E-45 BP GO:0006412, translation
23 37 0 37 1.20E-64 CC GO:0005840, ribosome
23 37 0 36 5.30E-65 MF GO:0003735, structural constituent of ribosome
32 35 3 31 2.70E-35 BP GO:0006412, translation
32 35 3 33 2.00E-50 CC GO:0030529, ribonucleoprotein complex
32 35 3 31 2.40E-52 MF GO:0003735, structural constituent of ribosome
37 36 11 8 0.00097 BP GO:0006412, translation
37 36 11 11 5.50E-08 CC GO:0005739, mitochondrion
37 36 11 4 0.00026 MF GO:0008135, translation factor activity
39 34 1 29 7.70E-32 BP GO:0006412, translation
39 34 1 29 4.60E-46 CC GO:0005840, ribosome
39 34 1 29 3.10E-48 MF GO:0003735, structural constituent of ribosome

182 11 0 9 4.50E-10 BP GO:0006412, translation
182 11 0 10 1.80E-16 CC GO:0005840, ribosome
182 11 0 10 7.80E-18 MF GO:0003735, structural constituent of ribosome
239 13 0 8 2.50E-08 BP GO:0006412, translation

(Table continues on following page.)
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Table V. (Continued from previous page.)

CLID CLSZ PUF Sample P Value Ont GO Term

239 13 0 6 3.30E-08 CC GO:0005840, ribosome
239 13 0 6 8.40E-08 MF GO:0003735, structural constituent of ribosome
299 11 1 7 3.40E-07 BP GO:0006412, translation
299 11 1 7 2.40E-11 CC GO:0005840, ribosome
299 11 1 7 2.40E-11 MF GO:0003735, structural constituent of ribosome

Lipid metabolism
73 26 8 6 1.80E-14 BP GO:0019915, sequestering of lipid
73 26 8 7 6.50E-09 CC GO:0005576, extracellular region
73 26 8 4 1.60E-06 MF GO:0045735, nutrient reservoir activity

279 10 2 2 9.30E-06 BP GO:0019374, galactolipid metabolic process
279 10 2 2 0.01 CC GO:0031967, organelle envelope
279 10 2 5 1.90E-07 MF GO:0042578, phosphoric ester hydrolase activity

Transport
47 34 8 2 0.00042 BP GO:0045036, protein targeting to chloroplast
47 34 8 23 2.20E-17 CC GO:0009536, plastid
47 34 8 8 1 MF GO:0003674, MF (PUF term)

288 11 4 3 2.40E-07 BP GO:0045036, protein targeting to chloroplast
288 11 4 4 1.10E-07 CC GO:0009941, chloroplast envelope
288 11 4 2 0.016 MF GO:0022804, transmembrane transporter activity
536 7 0 5 9.20E-06 BP GO:0006810, transport
536 7 0 5 3.60E-09 CC GO:0005794, Golgi apparatus
536 7 0 4 7.20E-05 MF GO:0005215, transporter activity
708 6 1 3 4.70E-08 BP GO:0006606, protein import into nucleus
708 6 1 3 6.40E-07 CC GO:0005635, nuclear envelope
708 6 1 3 2.30E-06 MF GO:0008565, protein transporter activity
765 5 1 2 3.20E-05 BP GO:0006820, anion transport
765 5 1 2 2.10E-05 CC GO:0005741, mitochondrial outer membrane
765 5 1 2 8.80E-07 MF GO:0008308, voltage-gated ion channel activity

Biological process
17 43 26 28 1.10E-08 BP GO:0008150, BP (PUF term)
17 43 26 23 1.50E-05 CC GO:0005575, CC (PUF term)
17 43 26 26 2.70E-09 MF GO:0003674, MF (PUF term)

Photosynthesis
4 134 43 28 2.20E-37 BP GO:0015979, photosynthesis
4 134 43 67 1.30E-89 CC GO:0044436, thylakoid part
4 134 43 2 0.00058 MF GO:0010242, oxygen evolving activity
9 88 18 6 2.00E-05 BP GO:0015979, photosynthesis
9 88 18 47 4.20E-30 CC GO:0009507, chloroplast
9 88 18 2 7.00E-04 MF GO:0004045, aminoacyl-tRNA hydrolase activity

45 32 5 7 2.90E-10 BP GO:0015979, photosynthesis
45 32 5 21 3.10E-16 CC GO:0009507, chloroplast
45 32 5 5 1 MF GO:0003674, MF (PUF term)

110 20 6 3 8.00E-05 BP GO:0015979, photosynthesis
110 20 6 12 9.00E-10 CC GO:0009507, chloroplast
110 20 6 2 0.00093 MF GO:0004176, ATP-dependent peptidase activity
304 9 2 7 1.60E-15 BP GO:0015979, photosynthesis
304 9 2 5 1.90E-11 CC GO:0009523, PSII
304 9 2 3 5.10E-07 MF GO:0046906, tetrapyrrole binding
428 8 2 2 0.024 BP GO:0006091, generation of metabolites and energy
428 8 2 6 5.10E-07 CC GO:0005739, mitochondrion
428 8 2 2 1.80E-06 MF GO:0004449, isocitrate dehydrogenase activity
555 5 1 3 1.20E-06 BP GO:0015979, photosynthesis
555 5 1 3 3.80E-10 CC GO:0009502, photosynthetic electron transport chain
555 5 1 3 3.30E-06 MF GO:0009055, electron carrier activity
923 5 2 3 5.20E-08 BP GO:0009853, photorespiration
923 5 2 3 3.90E-08 CC GO:0030964, NADH dehydrogenase complex
923 5 2 2 0.0047 MF GO:0003735, structural constituent of ribosome

Cell organization and biogenesis
77 24 5 6 4.20E-15 BP GO:0009834, secondary cell wall biogenesis
77 24 5 3 0.011 CC GO:0031225, anchored to membrane
77 24 5 6 1.70E-05 MF GO:0016757, transferring glycosyl groups

(Table continues on following page.)
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Table V. (Continued from previous page.)

CLID CLSZ PUF Sample P Value Ont GO Term

108 18 7 2 0.00084 BP GO:0009831, cellulose and pectin modification
108 18 7 18 1.30E-09 CC GO:0016020, membrane
108 18 7 2 0.0076 MF GO:0008289, lipid binding
349 9 0 7 1.00E-15 BP GO:0009664, cellulose and pectin biogenesis
349 9 0 6 0.00028 CC GO:0012505, endomembrane system
349 9 0 7 7.60E-19 MF GO:0005199, structural constituent of cell wall
953 5 1 2 9.70E-07 BP GO:0010020, chloroplast fission
953 5 1 2 0.029 CC GO:0009507, chloroplast
953 5 1 4 0.044 MF GO:0005488, binding

Secondary metabolism
12 73 13 3 0.0076 BP GO:0046148, pigment biosynthetic process
12 73 13 34 1.30E-18 CC GO:0009536, plastid
12 73 13 3 0.00059 MF GO:0003746, translation elongation factor activity

143 17 2 4 8.70E-08 BP GO:0046148, pigment biosynthetic process
143 17 2 8 1.40E-05 CC GO:0009536, plastid
143 17 2 5 0.0023 MF GO:0016491, oxidoreductase activity
347 10 2 3 1.20E-07 BP GO:0009686, GA biosynthetic process
347 10 2 4 0.95 CC GO:0005575, CC (PUF term)
347 10 2 5 1.80E-10 MF GO:0016706, oxidoreductase activity
432 8 1 5 6.00E-13 BP GO:0009813, flavonoid biosynthetic process
432 8 1 2 0.00017 CC GO:0009705, membrane of vacuole
432 8 1 2 0.00023 MF GO:0016706, oxidoreductase activity
600 5 0 2 9.30E-07 BP GO:0009718, anthocyanin biosynthetic process
600 5 0 2 0.63 CC GO:0005575, CC (PUF term)
600 5 0 4 0.00049 MF GO:0016740, transferase activity

Response to stimulus
68 22 3 7 5.40E-07 BP GO:0006952, defense response
68 22 3 11 0.02 CC GO:0016020, membrane
68 22 3 5 1.10E-06 MF GO:0004888, transmembrane receptor activity
85 23 9 10 6.70E-18 BP GO:0009408, response to heat
85 23 9 10 0.21 CC GO:0005575, CC (PUF term)
85 23 9 2 0.043 MF GO:0005516, calmodulin binding
90 22 5 6 1.60E-09 BP GO:0009408, response to heat
90 22 5 5 0.04 CC GO:0005634, nucleus
90 22 5 3 0.00052 MF GO:0051082, unfolded protein binding

346 10 3 2 0.03 BP GO:0009628, response to abiotic stimulus
346 10 3 9 6.20E-08 CC GO:0009536, plastid
346 10 3 3 0.57 MF GO:0003674, MF (PUF term)
356 9 9 8 1.10E-15 BP GO:0009733, response to auxin stimulus
356 9 9 3 0.021 CC GO:0043231, intracellular membrane-bound organelle
356 9 9 9 7.70E-05 MF GO:0003674, MF (PUF term)
480 8 1 3 3.80E-05 BP GO:0006979, response to oxidative stress
480 8 1 7 1.10E-08 CC GO:0005739, mitochondrion
480 8 1 2 7.20E-05 MF GO:0046933, hydrogen ion transporting ATP synthase
586 7 1 3 4.20E-05 BP GO:0009737, response to abscisic acid stimulus
586 7 1 2 0.00013 CC GO:0008287, Ser/Thr phosphatase complex
586 7 1 3 5.50E-07 MF GO:0015071, protein phosphatase type 2C activity
748 5 0 3 6.50E-08 BP GO:0009404, toxin metabolic process
748 5 0 4 0.01 CC GO:0005737, cytoplasm
748 5 0 3 6.90E-08 MF GO:0004364, glutathione transferase activity
912 5 0 4 7.30E-08 BP GO:0006457, protein folding
912 5 0 3 1.80E-06 CC GO:0009532, plastid stroma
912 5 0 3 1.20E-06 MF GO:0051082, unfolded protein binding

Physiological process
36 34 6 15 0.0011 BP GO:0043170, macromolecule metabolic process
36 34 6 11 2.00E-08 CC GO:0043228, nonmembrane-bound organelle
36 34 6 7 3.50E-06 MF GO:0003735, structural constituent of ribosome
81 24 8 3 0.0011 BP GO:0051188, cofactor biosynthetic process
81 24 8 14 6.70E-08 CC GO:0009536, plastid
81 24 8 8 1 MF GO:0003674, MF (PUF term)

130 15 1 3 3.80E-07 BP GO:0010119, regulation of stomatal movement
(Table continues on following page.)
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coregulation studies in Arabidopsis (Haberer et al.,
2006; Wei et al., 2006). With regard to ribosome assem-
bly, 124 of the 410 GO annotated genes for cytosolic,
plastidial, and mitochondrial ribosome components
appear in seven clusters (see Table V; cluster identifiers
23, 32, 37, 39, 182, 239, and 299); 272 ribosomal genes
appear in clusters with five or more members of the
nonprioritized data set. Although cluster 23 consists
exclusively of genes annotated as ribosomal genes
(GO:0005840; P value 1.2 3 10264), the other six clus-
ters are highly enriched in ribosomal genes and they
contain among others 16 PUF genes. Equally interest-
ing is the observation that photosynthesis-related an-
notations are highly overrepresented in five large
clusters (cluster identifiers 4, 9, 45, 110, and 304).
These clusters represent 51 of all the 121 genes that are
currently annotated by the GO system as photosyn-
thesis components (GO:0015979). Because both pro-
cesses, photosynthesis as well as ribosomal activities,
require the coordinated assembly of many proteins to
large complexes and protein-protein interaction net-
works, it is not unexpected that their corresponding
genes are tightly coregulated. In alignment with the

association hypothesis of this study, several of the
PUF members in these functionally extremely uniform
clusters may be involved in processes that are con-
nected to the enzymatic or regulatory networks of
photosynthesis and ribosomal activities.

Interestingly, our method also identified a cluster
(identifier 77) that is highly enriched in cell wall-related
annotations (e.g. GO:0009834; P value 4.2 3 10215), such
as cellulase synthase genes. A very similar cluster of
genes was recently described and experimentally ver-
ified by two groups (Brown et al., 2005; Persson et al.,
2005) who specifically mined public expression data for
genes that are coregulated with the cellulose synthase
genes CESA4, CESA7, and CESA8. In addition, compa-
rable results were described by Jen et al. (2006). This
example demonstrates that our genome-wide expres-
sion clustering approach generates biologically mean-
ingful data. An additional interesting cell wall-related
cluster is cluster 349 that contains eight genes for Pro-
rich extensin domain proteins.

The majority of the clusters in our data set contain
one or more PUF genes (Table IV), but only a few of the
larger clusters consist predominantly of PUF genes.

Table V. (Continued from previous page.)

CLID CLSZ PUF Sample P Value Ont GO Term

130 15 1 2 1 CC GO:0005575, CC (PUF term)
130 15 1 5 0.041 MF GO:0016787, hydrolase activity
134 17 7 12 1.10E-20 BP GO:0006511, ubiquitin-dependent catabolic process
134 17 7 12 1.70E-28 CC GO:0000502, proteasome complex
134 17 7 7 6.50E-08 MF GO:0008233, peptidase activity
199 13 1 9 3.90E-07 BP GO:0009058, biosynthetic process
199 13 1 6 5.60E-12 CC GO:0044445, cytosolic part
199 13 1 6 2.10E-08 MF GO:0003735, structural constituent of ribosome
224 12 3 2 0.045 BP GO:0044249, cellular biosynthetic process
224 12 3 8 1.00E-07 CC GO:0009507, chloroplast
224 12 3 2 0.043 MF GO:0003723, RNA binding
293 11 3 2 0.00012 BP GO:0042775, ATP synthesis coupled electron transport
293 11 3 9 3.80E-11 CC GO:0005739, mitochondrion
293 11 3 3 2.10E-05 MF GO:0015078, hydrogen ion transmembrane transporter
366 8 1 3 7.90E-06 BP GO:0006457, protein folding
366 8 1 6 4.50E-10 CC GO:0005783, endoplasmic reticulum
366 8 1 2 0.0016 MF GO:0031072, heat shock protein binding
406 9 1 4 1.00E-06 BP GO:0006511, ubiquitin-dependent protein catabolic
406 9 1 4 6.20E-09 CC GO:0000502, proteasome complex
406 9 1 3 0.00063 MF GO:0008233, peptidase activity
520 7 0 2 3.00E-06 BP GO:0006121, mitochondrial electron transport
520 7 0 2 3.40E-06 CC GO:0045273, respiratory chain complex II
520 7 0 3 4.90E-07 MF GO:0016627, oxidoreductase for CH-CH groups
728 6 0 6 5.50E-12 CC GO:0005783, endoplasmic reticulum
728 6 0 2 0.0051 MF GO:0008233, peptidase activity
790 5 1 3 8.60E-06 BP GO:0006511, ubiquitin-dependent catabolic process
790 5 1 3 1.10E-08 CC GO:0005839, proteasome core complex
790 5 1 3 0.00012 MF GO:0008233, peptidase activity
895 5 0 5 0.0099 BP GO:0008152, metabolic process
895 5 0 5 2.20E-07 CC GO:0005739, mitochondrion
895 5 0 2 9.50E-08 MF GO:0004774, succinate-CoA ligase activity
943 5 2 2 0.029 BP GO:0009058, biosynthetic process
943 5 2 4 4.70E-07 CC GO:0005783, endoplasmic reticulum
943 5 2 2 0.44 MF GO:0003674, MF (PUF term)
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Cluster 17 represents an exception to this rule. The 43
members of this cluster contain 26 PUF genes, and its
characterized members show no clear enrichment of
specific functions. Based on the high abundance of
PUF genes in the entire data set (approximately 32%),
PUF-gene-enriched clusters occur much less frequent
than those enriched in PKF genes; clusters consisting
exclusively of PUF genes are entirely absent (Table IV).
One explanation for this difference could be that the
expression of most PUF genes is controlled by the
same regulatory networks as many PKF genes. If this
is the case, PUF genes are more likely to appear in
expression clusters together with PKF genes than
without them.

Our method also identified clusters that are enriched
in abiotic stress-response annotations. For instance,
clusters 85 and 912 are highly enriched in heat stress-
related genes (GO:0009408; P values 6.7 3 10218 and
1.8 3 1026). Interestingly, 10 of the 23 members in the
cluster 85 were identified by the subsequent DEG
analysis of this study as genes that respond specifically
to heat stress and to a much lesser extent to other types
of abiotic stresses (see Supplemental Data S7). Based on
the available coexpression data, the nine PUF genes of
this cluster are now excellent candidates for discover-
ing novel gene functions involved in heat stress-
response pathways. Additionally, this example illustrates
that the two chosen approaches of this study, expres-
sion clustering and DEG analysis, complement and
confirm each other. The hypoxia cluster 203 is another
interesting abiotic stress cluster (Supplemental Data S6;
Fukao and Bailey-Serres, 2004). This cluster does not
appear in the most stringently prioritized data set
(Table V), because it did not pass the applied uniformity
filter. Nevertheless, it is enriched in hypoxia-responsive
genes (cluster identifier 203; GO:0001666; P value 2.0 3
1025), and it contains several members that are in-
volved in cellular respiration processes, such as genes
for the alcohol dehydrogenase ADH1 (AT1G77120), a
pyruvate dehydrogenase (AT4G33070), and a hemo-
globin-like oxygen binding protein that affects ATP
levels under hypoxia (AT2G16060; Hebelstrup et al.,
2007). Whether the five PUF genes of this cluster are
also involved in hypoxia-response processes can be
addressed in experimental studies.

In conclusion, the combined clustering and gene
function enrichment strategy allowed us to associate a
considerable fraction of the PUF encoding gene pool
with tightly coexpressed gene sets of known function.
Depending on the chosen stringency settings, the ap-
proach allowed us to assign 277 to 1,541 PUF genes
(Table IV) to more specific GO terms than those avail-
able in the latest GO annotation release for Arabidopsis.

Analysis of DEGs

DEG analysis can identify groups of genes that ex-
hibit expression changes in response to specific treat-
ments or cellular changes. Because this information is
not easily obtainable from clustering of global expres-

sion profiles, DEG analysis of publicly available ex-
pression data complements the previous approach by
associating PUF with PKF encoding genes based on
common differential expression responses to environ-
mental changes, such as abiotic stresses. If a group of
genes shares similar expression patterns across a wide
spectrum of treatments then it is likely that certain
members are involved in similar or connected response
pathways to these perturbations. The association of
genes with these response mechanisms can provide
valuable information for future functional characteri-
zation experiments of PUF or PKF genes.

One of the main challenges of performing system-
atic DEG analyses on large and diverse gene expres-
sion data sets from public sources is the identification
of the given design parameters to determine for each
experiment set its biologically most meaningful anal-
ysis strategy. This step is extremely crucial because
every analysis needs to focus on the specific treatment
factors of an experiment. The alternative of perform-
ing simply all possible comparisons will provide
meaningless results for many experimental designs
because it would generate a large number of illegiti-
mate contrasts between biologically incomparable
samples. To define reasonable analysis strategies for
public GeneChip microarray expression data sets, all
their replicates and the most useful sample compari-
sons need to be determined manually to provide the
proper experimental design parameters to the down-
stream statistical methods for identifying DEGs. The
MIAME and MGED ontology annotations (Brazma
et al., 2001; Whetzel et al., 2006) of the public micro-
array depositories provide the essential information
about the experiments, but efficient facilities to com-
pletely automate the DEG analyses on a large scale are
not available at this point.

To perform large-scale DEG analysis of public ex-
pression data, we chose for this study a human-
supervised analysis strategy, in which we determined
for each experiment set its optimum analysis param-
eters. The goal of this analysis was to identify all PUF
and PKF genes that respond to specific or a wide range
of conditions by enumerating their significant expres-
sion modulations in the corresponding experiment
classes. For this, the available experiment annotations
were manually evaluated and the most reasonable set
of sample comparisons were recorded in an experi-
ment definition table that contained all the required
input parameters to control the downstream statistical
DEG analysis in an automated manner (Supplemental
Data S2). Typically, we chose for each experiment set a
design strategy that focused the analysis on the pri-
mary treatment as the main experimental factor. Mul-
tifactorial analysis strategies were avoided as much as
possible. For instance, when an experiment contained
a stress treatment as the primary experimental factor
and time or different tissue types as secondary factors,
then we compared only samples from identical tissues
that were collected at the same time points. Addition-
ally, comparisons between different experiment sets
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were not considered to exclude unknown variables,
such as sample handling differences between labora-
tories (Hong et al., 2006). It is important to stress here
that, depending on the design of a given experiment
and its available annotations, it is often difficult to
select a single most meaningful analysis strategy.
Thus, our chosen strategy may not provide a perfect
solution for every experiment set, but it represents a
practical and reasonable compromise for performing
systematic DEG analyses on large expression data sets
from public databases.

In total our large-scale DEG analysis survey included
333 comparisons between samples with two to four
technical or biological replicates from 41 experiment
sets of six experiment categories. Table III provides an
overview of the corresponding sample and experiment
sets, and Supplemental Data S2 contains all detailed
information including the chosen analysis strategies for
these data sets. Because the abiotic stress category is by
far the largest data set, containing 524 chip hybridiza-
tions of 254 biosamples (Kilian et al., 2007), the follow-
ing description of our DEG results will be restricted to
this most comprehensive treatment category (Table VI).
The data for the other categories are provided in the
online database of this project (see below). As the
statistical method for identifying DEGs with the deter-
mined experiment analyses strategies, we used linear
models for microarray data (LIMMA) from Smyth
(2004, 2005), using in all cases as the confidence thresh-
old a false discovery rate (FDR) of #0.01 in combination
with a minimum fold-change filter of 2.

Applying the above DEG analysis strategy, we were
able to identify 269 PKF and 104 PUF genes that showed
expression changes in the majority of the 10 considered
abiotic stress categories (Fig. 3; Supplemental Data S7).
This set of a total of 373 generic stress DEGs was
determined by filtering the generated DEG data set for
members that showed one or more significant expres-
sion changes in at least 80% of all stress categories.
Interestingly, 95% of these DEGs also appear in the

generated gene expression clusters of the previous
analysis (Supplemental Data S5). The subsequent GO
term enrichment analysis revealed that stress-related
annotations are highly overrepresented in this group of
DEGs (see Supplemental Data S8). About 48 of its
members (13%) are associated with the GO term ‘‘re-
sponse to stress’’ from the BP ontology (GO:0006950; P
value 2.0 3 10213). This enrichment indicates that our
strategy has a high selectivity for identifying stress-
response genes. Therefore, many PUF encoding genes
in this data set may be directly or indirectly involved in
generic stress-response pathways. Among the different
groups of identified stress responsive genes (see below;
Fig. 3), the generic stress DEG set represents by far the
largest group.

Similarly, other studies have shown that stress-
regulated genes frequently exhibit expression changes
to a wide range of different abiotic stress treatments
rather than a refined subset of stresses (Rodriguez and
Redman, 2005; Kilian et al., 2007). The group of generic
stress DEGs contains 48 genes that are annotated as
transcription regulators in the MF ontology (GO:0030528;
P value 2.5 3 1023; Supplemental Data S8). This en-
richment emphasizes the central role of transcription
factors for the control of many stress-response path-
ways. Moreover, it opens the possibility that several of
the 104 PUF genes of this data set may be involved in
similar transcription control processes.

We also used the generated abiotic stress DEG data
set for identifying genes that respond predominantly
to a specific type of stress. These specific stress DEGs
were defined as follows. Firstly, they had to show in
25% of all comparisons of a given stress type signifi-
cant changes. Secondly, they had to exhibit at the same
time at least four times as many changes than in the
other nine stresses (Fig. 3; Supplemental Data S7). This
frequency-based filtering approach appeared to be
more efficient for associating DEGs with specific
stresses than overly strict filtering methods. This is
the case because most stress-response genes are not
highly specific for a single type of stress (Kilian et al.,
2007). As a result, strict filtering for genes responding
only to a single stress will fail to identify any candidate
genes in our comprehensive data sets. It is important
to emphasize here that the chosen filtering approach is
a practical compromise, but not a perfect solution to
the problem of assigning DEGs reliably to different
stress types. Therefore, the complete DEG results are
provided in Supplemental Data S7 where users can
apply their own custom filters and prioritize strate-
gies.

With the chosen frequency filter we were able to
identify specific stress DEG sets within six of the 10
treatment types (Table VI; Fig. 3). The data sets for the
stress treatments—light, oxidative, and wounding
stress—did not contain any genes that meet our filter-
ing criteria, and the drought data set contained only a
single member. The lack of specific stress DEGs in these
data sets indicates that the genome-wide expression
response patterns to these four stresses widely overlap

Table VI. Abiotic stress treatments

The table provides an overview of the different types of abiotic stress
experiment sets (Stress) that were used in the DEG analysis of this study.
The numeric columns contain the number of the analyzed GeneChip
microarrays (Chips), the number of the corresponding biosamples
(Samples), and the number of the performed comparisons (Comp). A
more detailed list of this data is available in Supplemental Data S2.

Stress Chips Samples Comp

Heat 68 34 17
Cold 48 24 12
Osmotic 48 24 12
Salt 48 24 12
Drought 56 28 14
Oxidative 48 24 12
Wounding 56 28 14
UV-B 56 28 14
Light 48 16 10
Genotoxic 48 24 12
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with those from other stresses. For the remaining six
treatment categories we identified in total 608 PKF and
206 PUF genes that responded predominantly to single
stresses. The functional analysis of these specific stress
DEG sets with our GO term enrichment approach
showed no outstanding enrichment of specific gene
functions. Instead, the results contained mostly mod-
erately enriched GO annotations from a wide spectrum
of molecular processes and BPs (Supplemental Data
S8). Similar to the generic stress data, the different
groups of specific stress DEGs included various marker
genes that are characteristic for stress-related gene sets.
For instance, they contained many genes that are an-
notated with the GO term ‘‘response to stress’’ (see Fig.
3). This term is significantly enriched in the heat stress
data set (P value 1.3 3 1022), whereas the other five
treatment sets contain it with considerable, but not
significantly enriched frequencies (P values of $5 3
1022). In addition, the heat stress and genotoxic stress
data sets showed the expected enrichment of genes that
are associated with heat response and DNA repair
processes, respectively (GO:0009408; P value 4.9 3 1023

and GO:0006281; P value 6.1 3 1025).
In summary, the above large-scale DEG study iden-

tified a comprehensive set of candidate PKF and PUF
genes that are involved in generic and specific stress-
response pathways. These results suggest the existence

of one or more abiotic stress-response regulons in
Arabidopsis similar to the environmental stress regu-
lon described in yeast (Saccharomyces cerevisiae; Gasch
et al., 2000; Gasch, 2002). Furthermore, the generated
data sets represent an important resource for other
scientists who are interested in addressing more spe-
cific questions relevant to abiotic stress research by
querying the generated DEG information in alternative
ways (see Supplemental Data S7; online database).

Plant Unknown-eome and Gene Expression Databases

To provide efficient access to the extensive data sets of
this study, we have developed two publicly available on-
line portals: the Plant Unknown-eome Database (POND;
http://bioweb.ucr.edu/scripts/unknownsDisplay.pl) and
the PED (http://bioweb.ucr.edu/PED). The POND inter-
face provides query and download options for the latest
PUF sets from Arabidopsis. Their predictions are based
on the three search methods used for this study: (1)
BLASTP searches against the PKFs from Swiss-Prot, (2)
HMM searches against the Pfam domain database, and
(3) retrieval of the unknown annotations from the GO
system (MF).

The PED integrates our diverse coexpression data
with a variety of online tools for user-friendly DEG
analysis, cluster visualization, and data mining (Fig.
4). The aim of this service is not to duplicate or com-
pete with the excellent Web resources that are already
available for array-based expression data from plants,
such as GEO, Genevestigator, BAR, AtGenExpress,
ATC, Page-Man, CSB.DB, and MetNet (Steinhauser
et al., 2004b; Zimmermann et al., 2004, 2005; Schmid
et al., 2005; Toufighi et al., 2005; Yang et al., 2005;
Barrett et al., 2006; Grennan, 2006; Jen et al., 2006;
Usadel et al., 2006). Instead PED complements the
available resources by providing a subset of the pub-
licly available Affymetrix expression data from Arabi-
dopsis in preanalyzed form using various statistical
methods for DEG identification combined with ex-
pression cluster information for coregulation analysis.
To provide high-confidence data, the database is re-
stricted to data sets with two or more replicates. The
following text provides a brief overview of the most
interesting features of the database.

All expression data in PED were normalized with the
RMA and MAS5 algorithms (Irizarry et al., 2003; Qin
et al., 2006). The incorporation of the expression values
from both normalization methods increases the utility
spectrum of the provided data sets. The quantile-based
RMA method generates more accurate expression mea-
sures for weakly expressed genes, whereas the MAS5
scaling approach is more appropriate for comparisons
between expression studies (Lim et al., 2007). The
option to identify DEGs by statistical modeling is a
very unique feature of this online service. For this, PED
provides the results of experiment design-based ex-
pression changes from several statistical methods, such
as LIMMA (Smyth, 2004, 2005). The corresponding

Figure 3. Generic and specific stress DEGs. The number of PUF and
PKF encoding genes are plotted that were identified as generic and
specific stress DEGs. The values above the bars provide the corre-
sponding numbers of genes that are currently annotated with the GO
term ‘‘response to stress’’ (GO:0006950 in BP ontology). The different
stress types are given along the abscissa. Genes responding to the
majority of the 10 abiotic stresses were considered as generic stress
DEGs (Generic), whereas those responding predominantly to a specific
type of stress were classified as specific stress DEGs. The following
filters were used for assigning genes to the two stress categories. (1)
Generic stress-response genes are those that showed in at least 80% of
all stress treatments one or more significant changes. (2) Specific stress-
response genes are those that showed in $25% of all comparisons of a
given stress significant changes, and exhibited there $4 times as many
changes than in the other nine stresses. For both filters, the observed
expression changes were only counted when they met our confidence
criteria of a FDR #0.01 and a fold change $2. The specific stress data
for the four treatment sets—light, oxidative, drought, and wounding—
are not plotted here because their data sets did not contain any DEGs
that met our specific stress criteria.
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experiment analysis strategies are available for online
viewing and download. A combinatorial query page
allows searching for DEGs by specific treatments and
filtering by various quantitative values to obtain can-
didate gene lists with strategies that resemble typical
microarray analysis routines. Furthermore, the expres-
sion intensity and DEG data in PED are fully integrated
with a comprehensive set of gene coexpression data
from correlation and cluster analyses. To identify for a
gene of interest its most positively or negatively co-
regulated neighbors, the interface contains a correlation
tool that provides for every gene on the arrays the
Pearson and Spearman correlation profiles against all
other genes. Information on discrete expression clus-
ters is combined with the correlation data. It contains
the four separate HTC cluster data sets that were gen-
erated by this study using as distance measures the two
correlation coefficients in their signed and absolute
forms (see previous section). An expression profile
plotting tool is available for evaluating the quality of
expression clusters or visualizing the expression pat-
terns for custom gene sets across all samples in the
database. This utility offers convenient options for

inspecting the vast number of expression clusters of
this study efficiently. Extensive download options for
imports into local spreadsheet programs are available
on all query levels for intensity, DEG, correlation, and
cluster data.

While the backend of the database is based on
PostgreSQL and the web interface is implemented in
Java, the framework of data analysis and online tools is
largely designed around R and BioConductor utilities
(Gentleman et al., 2005; R Development Core Team,
2006). The latter design feature will allow us to rou-
tinely add to PED’s online services in the future addi-
tional useful tools from the wide spectrum of statistical
data analysis packages that are provided by the R open
source community.

CONCLUSION

We present here one of the most comprehensive gene
coregulation studies that are currently available for
Arabidopsis. Our study is unique, to our knowledge,
by focusing on the analysis on PUF genes and their

Figure 4. The PED database. The outline illustrates important utilities of the database (http://bioweb.ucr.edu/PED).
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systematic association with functional annotations of
PKF genes. By applying a combination of genome-wide
cluster and DEG analysis methods, we identified many
interesting groups of potentially coregulated genes
from a wide range of BPs and stress-response path-
ways. This approach allowed us to assign 1,541 PUF
genes to relative specific and functionally informative
GO terms. These gene associations provide a valuable
resource for guiding future functional characterization
experiments of PUF and PKF genes. In addition, the
developed large-scale expression data analysis meth-
ods and the associated database represent important
components of a future open-source framework for
other scientists who are interested in performing sim-
ilar studies or utilizing public gene expression re-
sources more efficiently. Finally, users of the provided
data sets should keep two limitations in mind. First, the
generated associations are hypotheses and not final
proofs of gene functions. Second, even the most careful
statistical approaches for large-scale data can only
reduce, but not fully eliminate, errors in the decision-
making processes associated with the interpretation of
microarray data.

MATERIALS AND METHODS

Sequence Similarity and Domain Searches

Sequence similarity searches of the Arabidopsis (Arabidopsis thaliana)

proteome against the SwissProt database were performed with the BLASTP

program (Altschul et al., 1997) using an E value of 1 3 1026 as the cutoff and

the default settings for the remaining parameters. The Arabidopsis protein

sequences were obtained from The Arabidopsis Information Resource (TAIR)

site (version 7 release; ftp://ftp.arabidopsis.org/home/tair/Sequences), and

the SwissProt sequences (Wu et al., 2006) were downloaded from the ExPASy

site (release 54.4; ftp://ftp.expasy.org/databases/uniprot). To query only the

functionally characterized protein space, all entries annotated as sequences of

unknown function were removed from the SwissProt data set.

To identify protein domains of known function in the above Arabidopsis

proteins, domain searches against the hidden Markov models of the Pfam

database (Bateman et al., 2004) were performed with the HMMPFAM pro-

gram (Eddy, 1996) using an E value of 1 3 1022 as the cutoff. The global models

of the Pfam release 22 were used for these searches (ftp://ftp.sanger.ac.uk/

pub/databases/Pfam/). Matches against domains of unknown function were

ignored in the postprocessing of the search results to identify only candidate

sequences with domains of known functions.

GO Analysis

The Arabidopsis gene-to-GO mappings from TAIR/The Institute for

Genomic Research were used for all GO analysis steps of this study. They

were downloaded from the GO site (10/12/2007 release; http://geneontology.

org). Direct assignments to the root node of each ontology were considered as

unknown function annotations. These root assignments, in combination with

the evidence code ND, are the new official GO terms for sequences of

unknown function. The former terms, MF unknown (GO:0005554), BP un-

known (GO:0000004), and CC unknown (GO:0008372), were discontinued by

the consortium on 10/17/2006. In the subsequent GO term enrichment

analysis steps, the new unknown annotations to the root were considered as

artificial terminal annotations. This was necessary because the root node is

connected with all other genes in the GO network, which makes it impossible

to obtain for the new unknown annotations meaningful enrichment data with

most GO analysis approaches. This modification does not affect the results for

any of the other GO nodes.

The hypergeometric distribution was used to test gene sets for the

overrepresentation of GO terms. To perform this test, we developed a set of

modular functions using the R language for statistical computing for their

implementation (R Development Core Team, 2006). The corresponding

GOHyperGAll script computes for a given sample population of genes the

enrichment test for all nodes in the GO network, and returns raw and adjusted

P values. As an adjustment method for multiple testing, it uses the Bonferroni

method according to Boyle et al. (2004). GOHyperGAll is based on the GOstats

package (Falcon and Gentleman, 2007) from the BioConductor project

(Gentleman et al., 2005), and it provides similar utilities as the hyperGTest

function included in this package. The main differences of our method are that

it simplifies the usage of custom gene-to-GO mappings, and it contains

various utilities for efficiently analyzing large numbers of gene sets from

cluster analyses in batch mode. All functions of the GOHyperGAll script are

available in Supplemental Data S9.

Microarray Analysis

A total of 1,310 Affymetrix raw data Cel files were downloaded from the

AtGenExpress and GEO sites (Schmid et al., 2005; Barrett et al., 2006; Kilian

et al., 2007). All of them are derived from the Affymetrix ATH1 gene

GeneChip microarray for Arabidopsis, and the corresponding samples con-

tained at least two replicate samples. A summary of the utilized experiment

sets is provided in Table III, whereas a detailed description of the analyzed

data with their experimental design parameters is provided in Supplemental

Data S2. The required probe set-to-locus mappings for the ATH1 chip were

obtained from TAIR (ftp://ftp.arabidopsis.org/home/tair/Microarrays/

Affymetrix; version 2/5/2007). All ambiguous probe sets on this chip were

treated in the gene enumeration steps of this study in the following manner:

controls and probe sets matching no or several loci in the Arabidopsis genome

were ignored in the downstream analysis steps. In addition, redundant probe

sets that represent the same locus several times were counted only once.

The normalization of the raw data Cel files was performed in R using the

MAS5 and RMA algorithms that are implemented in the affy package form the

BioConductor project (Irizarry et al., 2003, 2006; Qin et al., 2006). To allow in

the DEG analysis comparisons between the different samples of an experi-

ment set, the RMA normalization was performed in batches for entire

experiment sets (Table III). This batch normalization is only required for the

quantile-based RMA approach, but not for the MAS5 scaling approach. The

present call information of the nonparametric Wilcoxon signed rank test was

computed with the affy package to estimate the amount of unexpressed genes

(Liu et al., 2002; McClintick and Edenberg, 2006). The obtained expression

values from both normalization methods were uploaded to the PED database.

For the DEG analysis, the replicates and the most appropriate sample

comparisons were determined manually for each experiment set. The gener-

ated analysis strategies were recorded in experiment definition tables (Sup-

plemental Data S2). These tables were used to control the downstream DEG

analysis steps in an automated manner by providing all information on

replicates and sample comparisons to the statistical test methods. The actual

analysis of DEGs was performed with the LIMMA package from Smyth (2004,

2005). The Benjamini and Hochberg method was selected to adjust P values for

multiple testing and to determine FDRs (Benjamini and Hochberg, 1995). As

confidence threshold we used an adjusted P value of #0.01 in combination

with a minimum fold-change filter of 2. All DEG analyses were performed on

both the MAS5 and RMA normalized data sets. Although both DEG analysis

results were uploaded to the PED database, only the RMA set is discussed in

this study because the RMA algorithm provides more accurate measurements

on weaker expressed genes (Qin et al., 2006).

Cluster Analysis

The correlation and cluster analysis steps were performed in R on the

MAS5 normalized expression data set. For this, the mean values from

replicated biological measurements were combined in one large expression

matrix. The RMA data were not used for cluster analysis, because they are less

reliable for correlation studies than MAS5 data (Lim et al., 2007). The Pearson

and Spearman correlation coefficients were calculated with the cor function in

R. The obtained correlation coefficients were transformed into a correlation-

based distance matrix after subtracting their values from 1. Four separate

distance matrices were calculated for the Pearson and Spearman correlation

coefficients in their signed and absolute forms. The matrices were passed on to

the hclust function (Murtagh, 1985; R Development Core Team, 2006) that

performs agglomerative hierarchical clustering. Complete linkage was used as

cluster joining method.
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To obtain from hierarchical dendrograms discrete clusters, we developed,

to our knowledge, a new HTC method for this project. This method identifies

subclusters in dendrograms based on a minimum tolerable similarity cutoff

between all cluster members. This is achieved by applying an all-against-all

similarity test for the clusters from all possible subtrees. At the same time,

unique cluster memberships are maintained and all items in the processed

dendrogram are assigned to clusters with one or more members. The

corresponding HTC R script is available in Supplemental Data S10. As the

cutoff we used for this cluster selection procedure a correlation coefficient of

$0.6. This cutoff was chosen because it resulted in the highest enrichment of

functionally related genes compared to alternative cutoffs settings (Supple-

mental Data S4). As a result of this method, the members of every identified

cluster shared with all other members of the same cluster correlation coeffi-

cients between 0.6 and 1.0.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Data S1. PUF sets.

Supplemental Data S2. GeneChip microarray experiments and analysis

strategies.

Supplemental Data S3. PMA data.

Supplemental Data S4. HTC cutoff selection.

Supplemental Data S5. Cluster data.

Supplemental Data S6. GO analysis of clusters.

Supplemental Data S7. DEG analysis.

Supplemental Data S8. GO analysis of DEGs.

Supplemental Data S9. R script for GO term enrichment analysis.

Supplemental Data S10. R script for HTC clustering.
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