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ABSTRACT The determination of conformational preferences in unfolded and disordered proteins is an important challenge in
structuralbiology.We here describe analgorithmtooptimize energy functions for the simulation of unfolded proteins. The procedure is
based on the maximum likelihood principle and employs a fast and efficient gradient descent method to find the set of parameters of
the energy function that best explain the experimental data. We first validate the method by using synthetic reference data, and
subsequently apply the algorithms to data from nuclear magnetic resonance spin-labeling experiments on the D131D fragment of
Staphylococcal nuclease. A significant strength of the procedure that we present is that it directly uses experimental data to optimize
the energy parameters, without relying on the availability of high resolution structures. The procedure is fully general and can be
applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.

INTRODUCTION

Studies of unfolded proteins are becoming increasingly im-

portant in molecular biology. For example, residual structure

in the unfolded states of globular proteins may affect the

stability and folding of these proteins. Further, it is becoming

clear that the native states of many proteins are highly

dynamic and resemble unfolded proteins more than globular

folds (1,2). While the precise prevalence of such disordered

proteins is difficult to determine experimentally (3,4), it has

been predicted (5) that up to 30% of eukaryotic proteins

contain regions of more than 50 amino acids that are com-

pletely disordered. These regions thus have a native state

characterized by increased dynamics and short-lived con-

formations and interactions. In addition, it is known that

some proteins display such increased dynamics throughout

their entire amino-acid sequences (1,2,5). These so-called

intrinsically unfolded proteins are also predicted to be abun-

dant in eukaryotic genomes (5), and have been suggested to

play a central role in protein interaction networks (6), and

to be implicated in a range of human diseases including

Alzheimer’s, Parkinson’s, and cardiovascular diseases as

well as cancer (7–9).

Despite the immense interest in disordered and unfolded

proteins, a molecular description and understanding of their

function is in general lacking (1). This is in particular due to

the fact that structural studies of disordered proteins are

highly challenging due to their increased dynamical prop-

erties (10,11). Recently, however, nuclear magnetic resonance

spectroscopy (NMR) methods have been used extensively to

obtain structural and dynamic information about unfolded

and intrinsically disordered proteins (12). Together with other

methods including x-ray scattering techniques (13), such stud-

ies have provided important information about the prevalence

of residual structure in unfolded proteins. In particular these

studies have shown that nonrandom long-range hydrophobic

interaction are often present (14–19). Detailed structural in-

terpretations of NMR and scattering experiments on disordered

proteins are complicated by the fact that the experimental

data are averages over very broad ensembles of conforma-

tions (20). However, when such dynamic averaging is taken

into account, the experimental data can provide important

restraints that can be used to obtain structural models of

unfolded proteins (13,18,19,21).

One experimental method that has proven particularly well

suited for structural studies of unfolded proteins is paramag-

netic relaxation enhancement (PRE) NMR experiments

(15,17,22,23). In these experiments, paramagnetic spin-labels

are introduced at specific sites throughout the amino-acid

sequence, and the resulting broadening of the backbone amide

NMR signals is measured. The observed effects, which may

extend to .20 Å, are directly related to the average distance

between the spin-label and the amide proton. PRE experi-

ments can therefore be used to probe long-range interactions

present in unfolded states that could not be determined using,

for example, NOE experiments. Provided that appropriate

attention is given to the ensemble averaging that is implicit in

these experimental data, the distance information can be used

as restraints to determine ensembles of conformations that

represent unfolded proteins (18,19,24).

Computational methods such as all-atom molecular dy-

namics simulations provide a complementary strategy to

study the structural and dynamical properties of unfolded
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proteins (14,25). This approach has the distinct advantage

that it does not require experimental data as input, and thus

when properly validated provides the opportunity to predict

the structural features of disordered proteins. A recurring

problem in computer simulations of proteins is, however, the

fact that highly accurate simulations are also very compu-

tationally demanding. Due to the large conformational space

sampled by disordered and unfolded proteins, efficient sam-

pling of the unfolded states using all-atom models requires

very large amounts of computational power (25).

Coarse-grained protein models provide an alternative

simulation methodology that attempts to overcome this

sampling problem (26). By reducing the number of particles

to be simulated, as well as using simplified energy functions,

efficient sampling becomes feasible. One significant problem

in this approach is, however, that it is not always clear how to

derive the energy functions to be used in conjunction with

the coarse-grained model. Physics-based parameter estima-

tion is in general not possible because of the use of coarse-

grained models. Statistical potentials provide one possible

method to derive energy functions for coarse-grained models

(27), and this approach has recently been very successful in

the study of native proteins (28). However, large databases of

reference structures are needed to derive such potentials and

these are not available for unfolded proteins.

The parameter learning technique is a more general

strategy toward optimizing parameters in energy functions

and force fields. For example, Fain et al. parameterized a

very general energy function by requiring that the energy of a

conformation and the RMSD to the native state be correlated

(29). Also, the energy parameters in a molecular dynamics

force field have been optimized by requiring that the native

state is stable (30). More recently, Winther et al. (31) used a

gradient descent parameter optimization scheme to ensure

that the probability of the native state was higher, and hence

its free energy lower, than that of other conformations.

However, while such approaches are highly promising when

energy functions for prediction of protein structure are con-

sidered, they require a set of well-defined reference confor-

mations to be used in the target function that is optimized.

Since disordered proteins are characterized by broad en-

sembles of conformations and do not have a single well-

defined native state conformation, the structural similarity to

such a reference conformation cannot be used to derive

energy functions for unfolded proteins.

To overcome the problem in parameterizing energy func-

tions from single reference conformations, Groth et al. (32)

devised a procedure that uses an ensemble of conformations

in an optimization procedure for solvation parameters. They

used a set of conformations derived from experimental NMR

data, and optimized the force-field parameters to match the

statistical weights of the conformations in the ensemble.

Alternatively, inverse Monte Carlo procedures have been

used to parameterize effective energy functions based on full

knowledge of radial density functions (33).

In this study, we extend the ideas described above to

develop a framework to optimize energy parameters for the

simulation of unfolded proteins. In particular, our algorithm

uses experimental data directly in the target function for

optimization. Thus, the parameters that are obtained are not

biased by the prior use of a particular structure determination

scheme. In short, the iterative algorithm that we propose

involves cycles of 1), sampling of conformations using an

initial guess of energy parameters; 2), back-calculation of

experimentally observable quantities from the simulated

structures; 3), comparison with experimental data; and 4), an

efficient gradient-based optimization scheme to obtain im-

proved energy parameters, which are in better agreement

with experiments. We here describe the framework of the

algorithm and apply it to PRE experiments on unfolded

proteins. We first test and validate the method using syn-

thetic experimental data, and subsequently apply the proce-

dure to experimental PRE data on the D131D fragment of

Staphylococcal nuclease (15).

Our results show that it is possible to optimize energy

parameters directly against experimental data, and that the

procedure therefore provides a strategy to parameterize

energy functions without having to rely on the availability of

suitable reference conformations. The method is generally

applicable to a range of types of experimental data, and we

therefore also expect it to be useful for optimizing other

types of energy functions including those used in molecular

dynamics simulations.

METHODS

In our simulations, we use a Ca model with monomers of a uniform hard-

sphere radius (2.5 Å). All bond lengths are fixed to 3.8 Å. Conformations

were obtained via Metropolis Monte Carlo sampling using both larger pivot

moves and local crankshaft moves in a ratio 1:9. In the parameter learning

algorithm described in Results, each ensemble consists of 20,000 confor-

mations, and was generated by performing 108 Monte Carlo moves and

saving a conformation every 5000 moves.

The HP-model

To create the HP-model of the Acyl Coenzyme-A Binding Protein (ACBP),

we divided the amino acids in to two equally large groups according to their

hydrophobicity. The amino acids that were classified as polar were Lys, Asp,

Glu, Asn, Gln, Pro, Ser, Arg, Gly, and Thr, and the ones classified as

hydrophobic were Ala, Tyr, His, Val, Trp, Cys, Leu, Ile, Met, and Phe.

Energy function

The energy function that we use consists of a local sequence-independent

term, and a nonlocal contact energy term. The nonlocal energies are

implemented as pairwise contact (square-well) potentials. These include a

hard core clash distance of 5 Å Ca center-to-center distance, and an outer

cutoff (interaction distance) of 8.5 Å. Residue pairs that are within these two

limits contribute to the total energy with a pairwise energy, eij, that depends

on the amino-acid types (i and j) of the two residues. Interactions between

pairs of residues separated by less than three amino acids are excluded.

The local energy function is a sequence-independent backbone potential

that we use to ensure that the Ca bond angles (u) and dihedral angles (t)

conform to a distribution that is representative of unfolded structures. To
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create such a potential, we analyzed all atom structures obtained with the

program RCG, which generates structures that model unfolded ensembles

well (21). Inspection of the distributions of u- and t-angles showed smooth,

bi-modal distributions of both u and t, which to a first approximation could

be considered independent. As the simplest starting point, we therefore chose

to model these distributions independently using a sequence-independent

energy function that consisted of the sum of two von Mises functions:

pðaÞ ¼ w1

e
b1 cosða�a1Þ

2pI0ðb1Þ
1 w2

e
b2 cosða�a2Þ

2pI0ðb2Þ
; a 2 fu; tg: (1)

The parameters a1, b1, a2, and b2 in this equation are given in Table 1 and

were obtained by fitting against the distributions obtained from RCG. I0 is

the modified Bessel function of order zero.

The total energy is obtained by combining the local and nonlocal energies as

Etot ¼ a +
N

i¼0

+
N

j¼i 1 3

SqWðaai; aajÞ � +
N

i¼0

ðlog pðuiÞ1 log pðtiÞÞ;

(2)

where SqW(aai, aaj) is the square-well function described above. In the

parameter optimization algorithm that we describe here, we only optimize

the interaction parameters in the nonlocal energy whereas we keep the local

energy terms and the interaction radii constant. The overall energy scale is

determined by the simulation temperature which we here choose by setting

kT ¼ 1. The parameter a determines the relative weight between the local

and the nonlocal energy function. For the generation of synthetic data we

determined the value of a so as to reproduce the scaling between the radius

of gyration and the chain length as determined experimentally (34). In the

HP-model we therefore used a ¼ 0.45. In the 20-parameter model described

in more detail in Results we used a ¼ 2.8 together with the values of qi

determined previously (35) (with q ranging from 0.333 for leucine to 0.125

for lysine). The same value of a ¼ 2.8 was used in the optimization against

the experimental data.

Paramagnetic relaxation enhancement data

In the calculations, we use a coarse-grained Ca model for the polypeptide

chain. For the back-calculation of PRE data from the conformations, we

therefore used the distances between pairs of Ca-atoms to estimate the

intensity ratios. However, the experimentally determined PRE effects arise

from the interaction between the amide proton and a paramagnetic nitroxide

group attached through the side chain of engineered cysteine residues. To

minimize bias arising from this difference we excluded residue pairs

separated by less than seven residues in the calculation of x2. This value was

obtained by visual inspection of simulated intensity ratio profiles, but agrees

with the length scale over which residue stiffness extends in unfolded

proteins (36). In the experimental study of D131D, the spin-label introduced

at position 105 was suspected to perturb the structure significantly (15), and

we therefore left out the data from this spin-label from our analysis.

RESULTS

A data-driven optimization algorithm

Our goal is to develop a procedure that is able to define an

energy function for the simulation of unfolded proteins. We

here consider energy functions of fixed functional forms,

although the methods described are also applicable to more

generally shaped energy functions (29). Instead of relying on

the availability of a set of suitable reference conformations,

we optimize the energy function directly against experimen-

tal data. Thus, for a given choice of a functional form, the

goal is to determine a set of energy parameters that are most

compatible with (i.e., has the highest posterior probability

for) a set of experimental data. The iterative algorithm that

we have developed is schematically shown in Fig. 1, and the

mathematical framework for the method is described in

detail in the Supplementary Material. While the procedures

involved are completely general, we here describe their ap-

plication in optimizing energy parameters for a coarse-

grained Ca model to match experimental PRE data from

experiments on unfolded proteins.

In the PRE experiments used here, the intensity of the

NMR signals of the backbone amide protons is recorded with

spin-labels attached, one at a time, at specific sites through-

out the amino-acid sequence. When the spin-label is in its

oxidized paramagnetic state the NMR cross-peaks are broad-

ened in a distance-dependent manner and hence the mea-

sured peak intensity (Iox) is lower than the intensity measured

(Ired) when the spin-label is reduced to its diamagnetic state.

The observed intensity ratio, Iox/Ired, is directly related to the

distances between the spin-label and amide proton through

the equations (15,23):

Iox

Ired

¼ R2;rede
�R2Ptd

R2;red 1 R2P

; (3)

R2P ¼ KÆr�6

ij æ 4tC 1
3tC

1 1 v
2

Ht
2

C

� �
: (4)

In these equations, R2P is the paramagnetic contribution

to the transversal relaxation rate, Ær�6
ij æ is the (weighed)

ensemble-averaged distance between spin-label and amide

proton and K, tC, vH, R2,red, and td are known constants or

experimentally measured values (23).

The first step of the algorithm (boxes 1a or 1b in Fig. 1)

consists of the collection of a set of experimentally deter-

mined values of Iox/Ired (or synthetic data for method valida-

tion). Also, in the first round of optimization an initial guess

of energy parameters is needed, and we here typically set all

interaction parameters to zero (Box 2 in Fig. 1). Then,

because the experimental data represent ensemble averages

from a large set of conformations, we generate heteroge-

neous ensembles of protein conformations in each iteration

of the algorithm (Step 3 in Fig. 1). The ensembles are here

generated by Metropolis Monte Carlo simulations, and each

round uses a different set of energy function parameters.

From the ensemble of conformations generated in the

Monte Carlo sampling we calculate the ensemble-averaged

distances, Ær�6
ij æ; and use Eqs. 3 and 4 to back-calculate the

Iox/Ired values one would have observed if this ensemble had

been studied experimentally (Step 4 in the algorithm). To

quantify how well the generated ensemble represents the

TABLE 1 Parameters for the backbone u and t potentials

w1 a1 b1 w2 a2 b2

Angles (u) 0.012052 2.0168 59.393 0.0025810 1.7149 439.31

Dihedrals (t) 0.011481 �2.7311 4.2100 0.0059725 4.8657 �1.7150
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experimental data, the calculated and experimentally deter-

mined intensity ratios are compared using a x2 score:

x
2 ¼ +

j

Iox

Ired

� �
exp;j

� Iox

Ired

� �
calc;j

 !2

: (5)

Low values of x2 indicate a good agreement between ex-

periment and simulation whereas high values mean that the

simulated structures do not represent the experimentally

determined data well. In the initial rounds of our algorithm

the energy parameters may not be realistic, and hence the

calculated x2 values are typically high.

The purpose of the optimization algorithm is to maximize

the likelihood of the experimental data given the energy

parameters or, equivalently, to minimize the x2 score by

changing the energy parameters. In principle, this could be

performed by first changing one or more energy parameters,

and then to perform a Monte Carlo simulation with the

changed energy parameters. From the ensemble obtained,

one could estimate a new x2 score which could be used to

judge whether the new parameter set is better or worse than

the original (30). However, this approach is computationally

extremely demanding and currently not feasible, as each

small step in the multidimensional parameter space involves

a complete resampling of conformations.

Instead, we devised a highly efficient approximate method

to estimate the effect on x2 when energy parameters are

changed. The idea is that for small steps in parameter space

we can assume that the previous Monte Carlo sample pro-

vides a reasonable ensemble of conformations, and that the

change in energy parameters corresponds only to a reweigh-

ing of the individual conformations (37,38). Since we know

the probability distribution according to which the ensemble

was sampled, we can estimate the reweighed quantity

Ær�6
ij ænew for a new set of energy parameters from (37,39):

Ær�6

ij ænew � Z
�1 +

NC

k¼1

ðr�6

ij Þkexp
�ðEk;new � Ek;oldÞ

kT

� �
; (6)

Z ¼ +
NC

k¼1

exp
�ðEk;new � Ek;oldÞ

kT

� �
: (7)

Here, the sums extend over the NC conformations in the

ensemble, and Ek,new is the energy of the kth conformation, as

calculated with the new parameters. Ek,old is the energy of the

same conformation calculated with the old set of parameters

that were used to generate the ensemble of conformations,

and ðr�6
ij Þk is the pairwise distance between spin-label and

amide proton in the conformation. The approach is analo-

gous to Zwanzig’s free-energy perturbation method (37), and

allows us to estimate the average distances one would expect

to obtain if the energy parameters are changed slightly,

without having to resort to a full resampling of conforma-

tions. Alternatively, the idea can be viewed as a particular

implementation of the umbrella-sampling method (38) in

which DE ¼ Enew – Eold is the biasing potential, and Eqs. 6

and 7 are used to remove the bias in the simulations.

From the updated set of distances obtained in Eq. 6 we can

calculate a new set of intensity ratios, and thereby estimate

the x2 score obtained with the modified parameters. Since

this procedure is computationally very efficient, we can

use standard nonlinear optimization methods such as the

Levenberg-Marquardt procedure (40) to optimize the set of

energy parameters (Step 5 in Fig. 1).

Since the approach described above is only applicable to

local changes in parameter and conformation space (37,41),

our algorithm includes periodic resampling of conformations

with the modified energy parameters. In practice, this is

performed after the Levenberg-Marquardt optimization pro-

cedure has converged locally in parameter space. After local

convergence we therefore perform a full Monte Carlo sam-

pling of conformations using the updated energy parameters.

We then use this ensemble for the next iteration in the full

algorithm (Fig. 1) and continue until the obtained parameters

converge. In the applications described below, the param-

eters converge within ,20 iterations of the algorithm.

Testing the algorithm with synthetic data

To test and validate the parameter learning algorithm de-

scribed above we found it useful initially to generate synthe-

tic reference data and use this as input to the algorithm. Such

FIGURE 1 An iterative algorithm for optimization of

energy parameters from experimental data. The algorithm

begins with either block 1a or 1b, and then proceeds to

block 2. It then consists of multiple cycles of blocks 3–5.

Resort to the main text for a discussion of the individual

steps.
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synthetic reference data ensure that the data we use as ref-

erence are consistent with the protein model and local energy

function that we employ. Importantly, since the synthetic

reference data were generated with known energy parame-

ters we can examine to what extent our optimization pro-

cedure can be used to recover these parameters. Furthermore,

synthetic reference data are free from experimental noise,

allowing for the analysis of experimental data with different

levels of pseudo-random noise.

As an initial test case we chose to start with the off-lattice

Ca HP-model (H, hydrophobic; P, polar) which is a simple

yet reasonably realistic model for unfolded proteins (42).

Importantly, the HP-model is designed to capture the hydro-

phobic interactions that are known to be important in un-

folded proteins (16).

For our studies we chose the 86-residue bovine Acyl

Coenzyme-A Binding Protein (ACBP) whose unfolded state

has been studied extensively (18,23,24,43) using NMR

spectroscopy. We used the wild-type sequence of ACBP and

divided the amino acids into two groups, hydrophobic (H)

and polar (P), as described in Methods. The energy function

that we use is a contact potential in which hydrophobic

interactions are favored (eHH¼�1) and all other interactions

are neutral (eHP¼ ePP¼ 0). Using this model we performed a

long Monte Carlo simulation (2.4 3 109 steps) at a

temperature where the chain expansion matches experimen-

tal data on unfolded proteins (34), and extracted 2.4 3 105

conformations. From these conformations we calculated syn-

thetic experimental PRE data using Eqs. 3 and 4. To mimic

the experimental studies of ACBP (23) we used positions 17,

36, 46, 65, and 86 for the spin-labels.

We then tested how well the algorithm could recover the

known HP parameters using only the knowledge of the

synthetic experimental data. As initial guess for parameters

we used values that represent a protein with no global

attractive forces, i.e., eHH ¼ eHP ¼ ePP ¼ 0. The progress

through the first few steps of the algorithm is shown in Fig.

2 A. In this plot the black curve represents the synthetic

intensity-ratio data for a spin-label placed at position 46. The

green curve in the plot is the intensity-ratios calculated from

the first ensemble generated using the initial energy param-

eters. Not surprisingly, the curve is very different from the

black curve, indicating that the initial set of conformations

does not represent the data well, but instead resembles the

ratios expected for a random coil. The noise in the green

curve arises from the relatively small ensemble size (20,000

conformations) used in the calculations.

The next step in the algorithm is the approximate gradient

descent optimization method in which each conformation in

the sampled ensemble is reweighed and the updated intensity

ratio is estimated using Eq. 6. The red curve in Fig. 2 A shows

the data after convergence of the optimization algorithm.

This curve is more noisy because the optimization algorithm

acts via stabilizing more relevant conformations, thereby in

practice reducing the effective size of the ensemble. Never-

theless, it is clear that the red curve is significantly closer to

the black reference data. This is reflected by a drop in the cal-

culated x2 from 12.4 to 3.5, and the optimized energy pa-

rameters (eHH¼�0.5, eHP¼�0.2, ePP¼ 0.0) are also much

closer to the true values of the HP-model than the initial

guess. In the next iteration of the algorithm we begin by re-

sampling conformations using the updated energy parame-

ters, and the resulting calculated intensity ratios are shown as

the blue curve in Fig. 2 A. This ensemble is then used as

starting point for the next round of parameter optimization,

and the algorithm is continued until convergence.

We completed 100 iterations of the algorithm and the

resulting parameter values and x2 scores from the first 20

cycles are shown in Fig. 2, B and C, respectively. It is seen

that the x2 score rapidly drops to a low value of�0.27 within

a few optimization steps and then stays constant throughout

the rest of the calculations. Simultaneously, it can be seen

FIGURE 2 (A) Development of the intensity

ratio profiles during the first few steps of the

optimization algorithm. The data correspond to

a spin-label introduced at position 46 in the

ACBP sequence. (Black) Synthetic reference

data generated using an HP-model (Step 1A in

Fig 1). (Green) Back-calculated data from the

initial energy parameters (Step 4, first round).

(Red) Intensity ratios obtained after parameter

optimization (Step 5, first round). (Blue) Inten-

sity ratios obtained after resampling using the

optimized parameters (Step 3, second round).

(B) Development of the energy parameters

through 20 iterations of the algorithm. (Black,

eHH; red, eHP; green, ePP.) It can be seen that the

parameters converge to the values correspond-

ing to the HP-model after a few iterations of the

algorithm. (C) Development of the x2 score

during 20 iterations of the algorithm. It can be

seen that the score drops concomitantly with the

convergence of the parameters.
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that the parameters also quickly move toward values around

eHH � �1, eHP � 0, and ePP� 0, and that the values are well

converged and stable. The nonzero value of x2 and the

fluctuations of the energy parameters are here mainly caused

by statistical noise from the finite size of the ensembles both

generated during the iterations but also used to define the

synthetic data. By averaging over steps 5–100 in the al-

gorithm, we obtain eHH ¼ �1.01 6 0.03, eHP ¼ �0.007 6

0.03, and ePP¼ 0.025 6 0.02 (mean and standard deviation).

The parameters recovered from the parameter learning

procedure are thus in excellent agreement with the HP

parameters that were used to generate the synthetic reference

data. The fact that there is an uncertainty, albeit small, in the

calculated parameters can be understood from the mathe-

matical framework described in the Supplementary Material.

In particular, Eq. 22 in the Supplementary Material shows

that there are two contributions to the inverse variance in

the estimated parameters with a common scale given by

(kTsd)�2. In this context, sd represents the uncertainty of the

synthetic data as a consequence of using a finite sample. The

first term in Eq. 22 is a product of covariances, C�C, between

the energy variation in parameter space and the calculated

experimental data. It provides a measure of how sensitive the

data is to changes of the parameters and must, for physical

reasons, be bounded from above. The second term, which we

found to be negligible for synthetic data (not shown), takes

into account the fact that it may not always be possible to

match the experimental data perfectly.

To test the robustness against the initial guess for the

energy parameters we repeated the calculations using either

an overall attractive (eHH ¼ eHP ¼ ePP ¼ �0.5) or repulsive

(eHH ¼ eHP ¼ ePP ¼ 0.5) potential as starting point. In both

cases the optimized parameters were within error the same as

those obtained above, demonstrating that the parameter

learning algorithm is highly robust with respect to the initial

guess of the parameters.

Optimization of a 20-parameter model

With success for the optimization of three parameters from

synthetic reference data, we proceeded to test a more realistic

model able to capture the full sequence variability of pro-

teins. A full 20 3 20 matrix with pairwise interaction ener-

gies for a contact potential has 210 independent parameters,

and we judged this to be too large a change from three

parameters. One possibility to reduce the number of param-

eters is, as in the HP-model, to divide the 20 amino acids into

separate groups and use a reduced alphabet of representative

amino acids (44). However, we instead chose to use a model

inspired by the observation (35) that a full interaction energy

matrix for native proteins (27) can be well described by a

single dominant eigenvector of the matrix. That is, for native

proteins the 210 interaction energy parameters (eij) in a

statistical potential can be very well approximated from a

per-amino-acid property, qi, using the relationship eij �

�qiqj (35). In native proteins, qi is related to the hydropho-

bicity of the ith amino acid, and this approximation to esti-

mate the pairwise interaction energies is therefore expected

to be particularly suitable in situations where nonspecific

hydrophobic interactions are dominant.

Again, we decided to test the algorithm using synthetic

data. As reference values of qi for the 20 amino acids we used

the values obtained by diagonalizing the interaction potential

for native proteins (27,35), but carried out the simulations at

an increased temperature where the chain is unfolded. We

generated synthetic data for ACBP, and used our optimiza-

tion algorithm on the synthetic data. The resulting evolution

of the 20 energy parameters during 500 cycles of the al-

gorithm is shown in Fig. 3. In that figure the horizontal lines

indicate the target qi values that were used to generated the

synthetic data. While the fluctuations here are larger than for

the HP-model, it is clear that the algorithm is still able to

recover the underlying energy parameters well. For example,

the Pearson correlation coefficient is 0.99 between the input

parameters and those recovered after optimization. Again the

errors in the estimated parameters can be understood in terms

of the equations in the Supplementary Material (Eq. 24). Our

results show that it is possible to encode an energy function

with at least 20 energy parameters using spin-label data of

this type. As for the HP-model, multiple independent runs of

the algorithm gave average parameter values that were

identical within error.

Effects of experimental noise, amount of data,
and ensemble size

The use of synthetic data allows us to examine in detail the

effects of changing different parameters in the optimization

algorithm. First, since the synthetic data is inherently free

from experimental error, we study the effect of different

levels of experimental noise. We thus prepared four sets of

synthetic data with increasing amounts of noise by adding

random numbers from Gaussian distributions with standard

deviations: 0.025, 0.05, 0.10, and 0.15. We then applied the

optimization algorithm to each of these four data sets and

calculated the average energy parameters from each run. For

the lowest levels of noise the parameters converged well,

whereas for the highest levels the obtained values are

averages over highly fluctuating values of qi. We observed

that the quality of the parameters obtained decreased mono-

tonously as increasing amounts of noise was added. To

quantify this observation, we calculated the force-field met-

ric described previously (45) between the optimized param-

eters and the ideal reference values used to generate the

synthetic data. A low value of this score indicates that two

energy functions are very similar. As seen in Fig. 4 A, the

energy-function distance between the true underlying energy

function and the one obtained after parameter optimization

increases gradually with the amount of noise added. This

observation is in qualitative agreement with the error analysis
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detailed in the Supplementary Material. In particular, Eq. 11

in the Supplementary Material shows that the inverse co-

variance matrix of the estimated parameters depends linearly

on the inverse of the square value of the noise level. Note

also that the obtained distance in the absence of noise is

approximately the same as that obtained by adding Gaussian

noise with a standard deviation of 0.025.

An additional complication in real experiments is the lack

of complete sets of data. We therefore analyzed how robust

the algorithm is when part of the full spin-label dataset is

missing. For these calculations we randomly selected only a

fraction (25%, 50%, or 75%) of the full synthetic dataset and

repeated the optimization using only these reduced sets of

data. We again quantified the agreement to the ideal energy

function using the force-field metric (45) (Fig. 4 B). The plot

clearly shows that the algorithm is robust against missing

data points and can achieve essentially the same accuracy

using only half of the experimental data. Interestingly, com-

parison to Fig. 4 A shows that the effects of missing data

points is minor compared to that of high levels of experi-

mental noise.

Finally, we analyzed the effect of using different ensemble

sizes during the optimization algorithm. The calculated

intensity ratios depend on the averages Ær�6
ij æ in the simulated

ensembles. These averages are most sensitive to short

distances, and it is therefore essential to have a sufficiently

broad ensemble in order not to bias the interpretation of the

data (18). In the optimizations described above, each

ensemble consists of 20,000 conformations. To ensure that

this was sufficiently large, we repeated the optimization cal-

culations using ensembles consisting of between 2000 and

80,000 conformations (Fig. 4 C). The results clearly show

FIGURE 4 Analysis of the effect of

noise, amount of data, and ensemble

size. (A) Synthetic data were generated

with different levels of noise by adding

random Gaussian noise with zero mean

and varying standard deviation. The

energy parameters were subsequently

optimized against this data. The simi-

larity between the ideal and the opti-

mized parameters was quantified using

an energy-function metric (45), d(V1, V2),

between two potential energy functions

V1 (reference) and V2 (optimized parameters). The results show that there is an approximately linear dependence between the accuracy of the optimized energy

function and the noise level (standard deviation of Gaussian noise). (B) We sampled different subensembles using only a fraction of the full dataset. These

subensembles were then used as input to the optimization algorithm, and the optimized parameters were then compared to the reference parameters. (C) Effect

of using different ensemble sizes during the optimization. In all plots are the values showing the mean and standard deviation over independent runs.

FIGURE 3 Parameter optimization us-

ing a 20-parameter model. Parameters

were optimized against synthetic data,

and the plots show the development of

the 20 energy parameters during 500

iterations of the algorithm. The param-

eters are shown in four plots for better

visualization. In each box, the horizon-

tal lines indicates the parameter values

that were used to generate the synthetic

reference data. There are no cysteine resi-

dues present for ACBP, so we are un-

able to optimize a parameter value for

Cys. It is seen that the parameters con-

verge after a few iterations and then

fluctuate closely around their optimal

values (Pearson correlation coefficient

of 0.99 between input and average of

optimized parameters).
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that the energy function can be recovered efficiently if the

ensemble size is larger than 10,000 conformations. Presum-

ably, for ensembles smaller than this, the tails of the distri-

butions are not sampled sufficiently well for the optimization

to be efficient.

Application to experimental PRE data

Given the ability to recover parameters well from synthetic

ACBP data we then applied the algorithm to experimentally

determined PRE data. Initially we used data obtained from

experiments on ACBP at a series of different denaturant

concentrations and pH values (18,23,24). However, we

found that the parameters displayed large fluctuations during

the optimization and did not give converged results in

independent runs, suggesting that the information contents in

these experimental data sets were not sufficient to determine

a set of energy parameters using the algorithm described. A

more detailed analysis of these optimizations suggests that

parameter fluctuations are more pronounced when using data

obtained at more denaturing conditions, and hence are likely

to arise at least in part because there is less residual structure

under these conditions (results not shown). Further, we note

that there is approximately the same amount of data available

at all sets of conditions (18,24), corresponding approxi-

mately to 65% or larger in the context of Fig. 4 B. In contrast

to the case of synthetic data, the optimization against experi-

mental data may be hampered both by random experimental

errors as well as systematic errors arising from the approx-

imate energy function and the use of a coarse-grained model.

In the framework of the Supplementary Material (Eqs. 11

and 24), this means that not only the finite covariances (first

term), but also the fact that it is not possible to match the

experiments perfectly (second term), gives rise to parameter

uncertainties.

Instead we turned to experimental data from the D131D

fragment of Staphylococcal nuclease (15,46). D131D is an

unfolded form of Staphylococcal nuclease that has been

obtained by deleting residues 4–12 and 141–149 of the wild-

type protein sequence (47). The experimental data that we

used contained 676 intensity ratio values distributed among

13 different spin-label probes. Application of the algorithm

on this data gave rise to a set of well-determined energy

parameters (Table 2). In principle it is possible to evaluate

the convergence of these parameters using Eq. 20 in the

Supplementary Material. However, this requires good esti-

mates of the experimental uncertainties which were not avail-

able. We have therefore taken a more pragmatic approach in

which we made sure that multiple independent optimization

runs gave results that were identical within the errors in the

individual runs. The resulting energy parameters are thus

able to describe the unfolded state of the D131D fragment

well, and as we describe below are not the result of over-

fitting the data. However, inspection of the obtained param-

eters does not reveal any simple pattern and, for example, the

interaction parameters are not significantly correlated to the

hydrophobicity of the amino acids.

Cross-validation of optimized parameters

As the parameters in Table 2 were obtained by optimizing

against all data from a single protein it is conceivable that the

obtained values suffer from overfitting. To test whether this

is the case we carried out a full cross-validation study. We

generated 13 different data sets by leaving out the data from

each of the 13 spin-label probes one at a time. For each of

these 13 data sets we carried out a full parameter optimiza-

tion. We then, for each data set in turn, calculated the in-

tensity ratios for the spin-label probes that were not included

in the optimization. For example, in the first cross-validation

data set we included all but the first spin-label probe in the

optimization, and finally we calculated the intensity ratios for

the first probe. The accuracy of the calculated values was

then quantified by calculating the x2 value to the experi-

mental data. The resulting 13 x2 values are shown as the red

bars in Fig. 5. For comparison, the black bars show the x2

values for each probe when all probes were used in the

optimization. Not surprisingly, the cross-validated x2 values

are all slightly higher than those obtained from the full data

sets. However, the increase in x2 is in general very small, and

often within error the same as that obtained from 20 indi-

vidual runs as indicated by the error bars in Fig. 5. Thus,

these results show that the parameters obtained do have

predictive value and are not seriously affected by overfitting.

In principle, the observed effects might be the result of

a heteropolymer collapse rather than the result of any

sequence-specific effects. To test whether the optimized pa-

rameters do in fact contain any amino-acid-specific infor-

mation we carried out 40 additional Monte Carlo simulations.

In each of these we permuted the 19 energy parameters in

Table 2 (no cysteine in D131D) to generate 40 different

energy functions. By permuting the energy parameters we

ensure that the average interaction energy between two resi-

dues is conserved while we scramble any sequence-specific

TABLE 2 Energy parameters (qi) obtained from optimization

against spin-label data on D131D

Amino acid Parameter SD Amino acid Parameter SD

ALA 0.122 0.004 GLY 0.193 0.001

CYS ND ND HIS �0.61 0.02

ASP �0.05 0.02 ILE 0.615 0.008

GLU �0.108 0.004 LYS 0.291 0.004

PHE 0.126 0.01 LEU 0.291 0.006

MET 0.243 0.004 SER 0.440 0.006

ASN 0.184 0.004 THR 0.031 0.008

PRO 0.382 0.008 VAL 0.425 0.003

GLN 0.214 0.002 TRP 0.084 0.006

ARG 0.43 0.01 TYR 0.293 0.005

The parameters are calculated as the average and standard deviations over

three independent runs.

Experimental Energy Parameterization 189

Biophysical Journal 94(1) 182–192



effects in the parameters. The green bars in Fig. 5 show the

average and standard deviation of the x2 values for each

probe obtained in this way. It is clear that permutation of the

energy parameters gives rise to x2 values that are signifi-

cantly larger than those obtained either in the full optimi-

zation or from the cross-validation calculations. Finally, we

carried out 40 independent simulations in which there was no

interaction potential at all (qi ¼ 0). The resulting x2 values

(blue bars in Fig. 5) are in general much higher than those

obtained from the optimized and permuted parameters. To-

gether, these results clearly show that the parameters obtained

both contain a contribution from a sequence-independent

collapse and from sequence-specific interactions that are not

captured by the permuted parameters. We are therefore con-

fident that the parameters we have found using all 13 probes

are not the result of over-fitting, and that the optimized pa-

rameters reflect inherent properties of the spin-label data

which, in turn, depend on the nature of the conformational

preferences of D131D.

Transferability of the optimized parameters

The parameters that we have optimized using the spin-label

data for D131D correspond to effective interaction param-

eters under the conditions (pH 5.3, 305 K) at which the

experiments were performed (15). It is known that varying

solvent conditions can affect the presence of residual struc-

ture and thereby the measured spin-label intensity ratios as

demonstrated, for example, for acid and denaturant unfolded

ACBP (18,24). With this caveat in mind, we carried out

simulations of ACBP using the parameters that we optimized

from D131D in order to evaluate any potential transferability

of the optimized parameters. Table 3 shows the x2 values

that we calculate when we compare the predictions to each of

the six different sets of experimental data for ACBP. For

comparison, we carried out a set of calculations in which all

interaction parameters were set to zero, corresponding to an

excluded volume random coil chain. Finally, we carried out a

set of calculations where we permuted the energy parameters

that we optimized from the D131D data. The results are sum-

marized in Table 3 and reveal that the optimized parameters

in general have a better prediction capability than the other

parameter sets. Only at the most strongly denaturing con-

ditions (pH 2.3 and 3.0 M GuaHCl), which are also most

dissimilar to the conditions at which the D131D data were

obtained, is a simple random coil model a better predictor.

Also, it is noteworthy that permutations of the parameters

that were optimized for D131D lead to worse predictions, in

line with the conclusions above that it is not just the overall

scale of the parameters that have been optimized.

DISCUSSION

We have here described the development of a computational

algorithm for the parameterization of energy functions. The

algorithm is distinguished from earlier work by not requiring

a reference conformation or ensemble, but instead takes, as

experimental input, observables such as PRE data. One ad-

vantage of this approach is that it is applicable to systems

such as disordered proteins where the similarity to a refer-

ence conformation is not easily defined. An additional strength

of this approach is that it is not biased by any prior structural

interpretation of the experimental data. For example, a set of

experimental PRE values on unfolded proteins can be com-

patible with both compact and expanded ensembles of con-

formations (11,18,19), and it may not always be clear which

description is the most appropriate. Similarly, it has been

observed that widely different structures may be compatible

with the same set of NOE or x-ray scattering data (48,49). By

avoiding reliance upon a prior structural interpretation of a

set of experimental data, the algorithm may be able to recover

more realistic sets of parameters.

FIGURE 5 Validation of the parameters optimized from experimental

reference data. Each bar corresponds to the x2 value calculated between the

experimental intensity ratios for a particular spin-label probe, and the values

calculated using different energy parameters. (Black) Values obtained when

parameters were optimized against all spin-label data. The bar shows the

mean and standard deviation over 10 independent runs. (Red) Values

obtained in a cross-validation where the spin-label data for the probe for

which the x2 is calculated were left out of the optimization algorithm. The

bar shows the mean and standard deviation over 10 independent runs.

(Green) x2 values obtained using permuted parameters. The bar shows the

mean and standard deviation of the values obtained from 40 runs, each using

a different set of permuted energy parameters. (Blue) Values obtained when

the energy function only consists of the local backbone potential, i.e., in the

absence of any long-range attractive interactions.

TABLE 3 Prediction of ACBP spin label data using either the

optimized parameters or different sets of control parameters

ACBP Dataset Optimized Random coil Permuted

1.6 M GuaHCl 13.6 6 0.2 47.8 6 0.5 29 6 14

1.9 M GuaHCl 13.3 6 0.2 38.9 6 0.5 37 6 23

3.0 M GuaHCl 14.8 6 0.3 12.1 6 0.3 47 6 36

pH 2.3 35.3 6 0.6 25.7 6 0.4 73 6 48

pH 2.8 16.8 6 0.4 45.4 6 0.6 50 6 29

pH 3.0 22.8 6 0.4 53.2 6 0.3 50 6 23

Values shown are the x2 values to previously determined experimental data

(18,24) under the conditions indicated. Values are the means and standard

deviations over 10 runs. In the case of the permuted parameters, each run

was carried out using a different permutation.
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Using synthetic, but realistic, PRE data we have shown that

it is in principle possible to parameterize energy functions

using results obtained from NMR experiments on unfolded

proteins. Further, application of the method to experimental

data on D131D shows that the approach can yield reproduc-

ible and internally consistent results from experimental data.

However, the parameters obtained from the analysis of D131D

do not seem to conform to an easily identifiable general pat-

tern. We believe that the parameters obtained include prop-

erties that are specific to D131D in addition to more general

properties of unfolded proteins. Nevertheless, in a test of the

transferability of the optimized parameters to ACBP, we find

that the parameters give better predictions than both a simple

random coil model and a model in which the optimized param-

eters were permuted. To improve the optimized parameters we

suggest to apply the algorithm to multiple proteins and exper-

imental data sets simultaneously, thus minimizing effects that

are specific to a single protein. For example, the algorithm can

be directly applied to multiple proteins by extending the sum

in the calculation of x2 (Eq. 5) to multiple data sets. However,

as the parameters that are optimized are effective interaction

parameters under the experimental conditions, this approach

requires that multiple data sets have been measured under

similar conditions, which to our knowledge is not the case for

PRE data. As an alternative method to obtain transferable

energy parameters, experiments from different experimental

conditions can be combined by specifically including a

dependency on the conditions in the energy function.

Finally, we note that our method is applicable to a range of

experimental data, and that it can be applied to multiple types

of experiments simultaneously. For example, it should be pos-

sible to combine PRE data from unfolded proteins with other

types of data such as scalar couplings, residual dipolar cou-

plings, and x-ray scattering data (13,21,34,50) to parameterize

a more detailed energy function that include a sequence-

dependent local energy function.

Also, while the method that we describe has been devel-

oped with heterogenous states in mind, it is also applicable to

the native states of globular proteins. For example, it is clear

that native states of proteins may be highly dynamic (51–53)

and that the level of such dynamics can be determined ex-

perimentally (54). The methods described here may therefore

be used to refine energy functions for exploring native states,

including force fields used in molecular dynamics simula-

tions, by optimizing these against NMR observables that

probe the structure as well as the dynamics in native proteins.

SUPPLEMENTARY MATERIAL
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article, visit www.biophysj.org.

We thank Andrea Amatori and Thomas Hamelryck for help and discussions.

A.B.N. was supported by a scholarship from Novo.

REFERENCES

1. Uversky, V. N. 2002. Natively unfolded proteins: a point where biol-
ogy waits for physics. Protein Sci. 11:739–756.

2. Dyson, H. J., and P. E. Wright. 2005. Intrinsically unstructured pro-
teins and their functions. Nat. Rev. Mol. Cell Biol. 6:197–208.

3. Cortese, M. S., J. P. Baird, V. N. Uversky, and A. K. Dunker. 2005.
Uncovering the unfoldome: enriching cell extracts for unstructured
proteins by acid treatment. J. Proteome Res. 4:1610–1618.

4. Szollosi, E., E. Hazy, C. Szasz, and P. Tompa. 2006. Large systematic
errors compromise quantitation of intrinsically unstructured proteins.
Anal. Biochem. 360:321–323.

5. Dunker, A. K., Z. Obradovic, P. Romero, E. C. Garner, and C. J.
Brown. 2000. Intrinsic disorder in complete genomes. Genome Inform.
11:161–171.

6. Haynes, C., C. J. Oldfield, F. Ji, N. Klitgord, M. E. Cusick, P.
Radivojac, V. N. Uversky, M. Vidal, and L. M. Iakoucheva. 2006.
Intrinsic disorder is a common feature of hub proteins from four
eukaryotic interactomes. PLoS Comp. Biol. 2:e100.

7. Iakoucheva, L. M., C. J. Brown, J. D. Lawson, Z. Obradovic, and A. K.
Dunker. 2002. Intrinsic disorder in cell-signaling and cancer-associated
proteins. J. Mol. Biol. 323:573–584.

8. Ross, C. A., and M. A. Poirier. 2004. Protein aggregation and neuro-
degenerative disease. Nat. Med. 10(Suppl):S10–S17.

9. Cheng, Y., L. LeGall, G. J. Oldfield, A. K. Dunker, and V. N. Uversky.
2006. Abundance of intrinsic disorder in protein associated with cardio-
vascular disease. Biochemistry. 45:10448–10460.

10. Bussell, R., Jr., and D. Eliezer. 2001. Residual structure and dynamics
in Parkinson’s disease-associated mutants of a-synuclein. J. Biol.
Chem. 276:45996–46003.

11. Dedmon, M. M., K. Lindorff-Larsen, J. Christodoulou, M. Vendruscolo,
and C. M. Dobson. 2005. Mapping long-range interactions in
a-synuclein using spin-label NMR and ensemble molecular dynamics
simulations. J. Am. Chem. Soc. 127:476–477.

12. Dyson, H. J., and P. E. Wright. 2004. Unfolded proteins and protein
folding studied by NMR. Chem. Rev. 104:3607–3622.

13. Bernado, P., L. Blanchard, P. Timmins, D. Marion, R. W. H. Ruigrok,
and M. Blackledge. 2005. A structural model for unfolded proteins
from residual dipolar couplings and small-angle x-ray scattering. Proc.
Natl. Acad. Sci. USA. 102:17002–17007.

14. Bond, C. J., K.-B. Wong, J. Clarke, A. R. Fersht, and V. Daggett. 1997.
Characterization of residual structure in the thermally denatured state of
barnase by simulation and experiment: description of the folding
pathway. Proc. Natl. Acad. Sci. USA. 94:13409–13413.

15. Gillespie, J. R., and D. Shortle. 1997. Characterization of long-range
structure in the denatured state of Staphylococcal nuclease. I. Para-
magnetic relaxation enhancement by nitroxide spin labels. J. Mol. Biol.
268:158–169.

16. Klein-Seetharaman, J., M. Oikawa, S. B. Grimshaw, J. Wirmer, E.
Durchardt, T. Ueda, T. Imoto, L. J. Smith, C. M. Dobson, and H.
Schwalbe. 2002. Long-range interactions within a nonnative protein.
Science. 295:1719–1722.

17. Lietzow, M. A., M. Jamin, H. J. Dyson, and P. E. Wright. 2002.
Mapping long-range contacts in a highly unfolded protein. J. Mol. Biol.
322:655–662.

18. Lindorff-Larsen, K., S. Kristjansdottir, K. Teilum, W. Fieber, C. M.
Dobson, F. M. Poulsen, and M. Vendruscolo. 2004. Determination of
an ensemble of structures representing the denatured state of the bovine
acyl-coenzyme A binding protein. J. Am. Chem. Soc. 126:3291–
3299.

19. Francis, C. J., K. Lindorff-Larsen, R. B. Best, and M. Vendruscolo.
2006. Characterization of the residual structure in the unfolded state
of the D131D fragment of Staphylococcal nuclease. Proteins. 65:
145–152.

20. Mittag, T., and J. Forman-Kay. 2007. Atomic-level characterization of
disordered protein ensembles. Curr. Opin. Struct. Biol. 17:3–14.

Experimental Energy Parameterization 191

Biophysical Journal 94(1) 182–192



21. Jha, A. K., A. Colubri, K. F. Freed, and T. R. Sosnick. 2005. Statistical
coil model of the unfolded state: resolving the reconciliation problem.
Proc. Natl. Acad. Sci. USA. 102:13099–13104.

22. Yi, Q., M. L. Scalley-Kim, E. J. Alm, and D. Baker. 2000. NMR
characterization of residual structure in the denatured state of protein L.
J. Mol. Biol. 299:1341–1351.

23. Teilum, K., B. B. Kragelund, and F. M. Poulsen. 2002. Transient struc-
ture formation in unfolded acyl-coenzyme A-binding protein observed
by site-directed spin labeling. J. Mol. Biol. 324:349–357.

24. Kristjansdottir, S., K. Lindorff-Larsen, W. Fieber, C. M. Dobson,
M. Vendruscolo, and F. M. Poulsen. 2005. Formation of native and
non-native interactions in ensembles of denatured ACBP molecules
from paramagnetic relaxation enhancement studies. J. Mol. Biol. 347:
1053–1062.

25. Zagrovic, B., C. D. Snow, S. Khaliq, M. R. Shirts, and V. Pande. 2002.
Native-like mean structure in the unfolded ensemble of small proteins.
J. Mol. Biol. 323:153–164.

26. Tozzini, V. 2005. Coarse-grained models for proteins. Curr. Opin.
Struct. Biol. 15:144–150.

27. Miyazawa, S., and R. L. Jernigan. 1996. Residue-residue potentials
with a favorable contact pair term and an unfavorable high packing
density term, for simulation and threading. J. Mol. Biol. 256:623–644.

28. Hubner, I. A., E. J. Deeds, and E. I. Shakhnovich. 2005. High-resolu-
tion protein folding with a transferable potential. Proc. Natl. Acad. Sci.
USA. 102:18914–18919.

29. Fain, B., and M. Levitt. 2003. Funnel sculpting for in silico assembly
of secondary structure elements of proteins. Proc. Natl. Acad. Sci.
USA. 100:10700–10705.

30. Krieger, E., G. Koraimann, and G. Vriend. 2002. Increasing the preci-
sion of comparative models with YASARANOVA—a self-parameter-
izing force field. Proteins. 47:393–402.

31. Winther, O., and A. Krogh. 2004. Teaching computers to fold proteins.
Phys. Rev. E. 70:030903.

32. Groth, M., J. Malicka, S. Rodziewicz-Motowidlo, C. Czaplewski, L.
Klaudel, W. Wiczk, and A. Liwo. 2001. Determination of conforma-
tional equilibrium of peptides in solution by NMR spectroscopy and
theoretical conformational analysis: application to the calibration of
mean-field solvation models. Biopolymers. 60:79–95.

33. Bathe, M., and G. C. Rutledge. 2003. Inverse Monte Carlo procedure
for conformation determination of macromolecules. J. Comput. Chem.
24:876–890.

34. Kohn, J. E., I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon, N. Cingel,
R. S. Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M. Z. Hasan,
V. S. Pande, I. Ruczinski, S. Doniach, and K. W. Plaxco. 2004.
Random-coil behavior and the dimensions of chemically unfolded
proteins. Proc. Natl. Acad. Sci. USA. 101:12491–12496.

35. Cieplak, M., N. Holter, A. Maritan, and J. Banavar. 2001. Amino acid
classes and the protein folding problem. J. Chem. Phys. 114:1420–1423.

36. Schwalbe, H., K. M. Fiebig, M. Buck, J. A. Jones, S. B. Grimshaw, A.
Spencer, S. J. Glaser, L. J. Smith, and C. M. Dobson. 1997. Structural
and dynamical properties of a denatured protein. Heteronuclear 3D
NMR experiments and theoretical simulations of lysozyme in 8 M urea.
Biochemistry. 36:8977–8991.

37. Zwanzig, R. W. 1954. High-temperature equation of state by a per-

turbation method. I. Nonpolar gases. J. Chem. Phys. 22:1420–1426.

38. Torrie, G. M., and J. P. Valleau. 1977. Nonphysical sampling distribu-
tion in Monte Carlo free-energy estimation: umbrella sampling. J. Comput.
Phys. 23:187–199.

39. Newman, M., and G. T. Barkema. M. E. J., and Newman, 1999. Monte
Carlo Methods in Statistical Physics. Oxford University Press, Oxford, UK.

40. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.

1992. Numerical Recipes in C. Cambridge University Press, Cambridge,
UK.

41. Bennett, C. H. 1976. Efficient estimation of free energy differences

from Monte Carlo data. J. Comput. Phys. 22:245–268.

42. Shortle, D., H. S. Chan, and K. A. Dill. 1992. Modeling the effects of
mutations on the denatured states of proteins. Protein Sci. 1:201–215.

43. Thomsen, J. K., B. B. Kragelund, K. Teilum, J. Knudsen, and F. M.

Poulsen. 2002. Transient intermediary states with high and low folding
probabilities in the apparent two-state folding equilibrium of ACBP at

low pH. J. Mol. Biol. 318:805–814.

44. Wang, J., and W. Wang. 1999. A computational approach to sim-
plifying the protein folding alphabet. Nat. Struct. Biol. 6:1033–1038.

45. Alonso, J. L., and P. Echenique. 2006. A physically meaningful
method for the comparison of potential energy functions. J. Comput.
Chem. 27:238–252.

46. Gillespie, J. R., and D. Shortle. 1997. Characterization of long-range
structure in the denatured state of Staphylococcal nuclease. II. Distance

restraints from paramagnetic relaxation and calculation of an ensemble

of structures. J. Mol. Biol. 268:170–184.

47. Alexandrescu, A. T., W. Jahnke, R. Wiltscheck, and M. J. Blommers.

1996. Accretion of structure in staphylococcal nuclease: an 15N NMR

relaxation study. J. Mol. Biol. 260:570–587.

48. Zagrovic, B., and W. F. van Gunsteren. 2006. Comparing atomistic simu-

lation data with the NMR experiment: how much can NOEs actually
tell us? Proteins. 63:210–218.

49. Zagrovic, B., and V. S. Pande. 2006. Simulated unfolded-state en-

semble and the experimental NMR structures of villin headpiece yield
similar wide-angle solution x-ray scattering profiles. J. Am. Chem. Soc.
128:11742–11743.

50. Smith, L. J., K. A. Bolin, H. Schwalbe, M. W. MacArthur, J. M.
Thornton, and C. M. Dobson. 1996. Analysis of main chain torsion

angles in proteins: prediction of NMR coupling constants for native
and random coil conformations. J. Mol. Biol. 255:494–506.

51. Karplus, M., and J. A. McCammon. 2002. Molecular dynamics simu-

lations of biomolecules. Nat. Struct. Biol. 9:646–652.

52. Lindorff-Larsen, K., R. B. Best, M. A. Depristo, C. M. Dobson, and
M. Vendruscolo. 2005. Simultaneous determination of protein structure

and dynamics. Nature. 433:128–132.

53. Best, R. B., K. Lindorff-Larsen, M. A. DePristo, and M. Vendruscolo.
2006. Relation between native ensembles and experimental structures

of proteins. Proc. Natl. Acad. Sci. USA. 103:10901–10906.

54. Mittermaier, A., and L. E. Kay. 2006. New tools provide new insights
in NMR studies of protein dynamics. Science. 213:224–228.

192 Norgaard et al.

Biophysical Journal 94(1) 182–192


